scholarly journals End-Effector Pose Estimation in Complex Environments Using Complementary Enhancement and Adaptive Fusion of Multisensor

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Mingrui Luo ◽  
En Li ◽  
Rui Guo ◽  
Jiaxin Liu ◽  
Zize Liang

Redundant manipulators are suitable for working in narrow and complex environments due to their flexibility. However, a large number of joints and long slender links make it hard to obtain the accurate end-effector pose of the redundant manipulator directly through the encoders. In this paper, a pose estimation method is proposed with the fusion of vision sensors, inertial sensors, and encoders. Firstly, according to the complementary characteristics of each measurement unit in the sensors, the original data is corrected and enhanced. Furthermore, an improved Kalman filter (KF) algorithm is adopted for data fusion by establishing the nonlinear motion prediction of the end-effector and the synchronization update model of the multirate sensors. Finally, the radial basis function (RBF) neural network is used to adaptively adjust the fusion parameters. It is verified in experiments that the proposed method achieves better performances on estimation error and update frequency than the original extended Kalman filter (EKF) and unscented Kalman filter (UKF) algorithm, especially in complex environments.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xinghua Liu ◽  
Dandan Bai ◽  
Yunling Lv ◽  
Rui Jiang ◽  
Shuzhi Sam Ge

Considering various cyberattacks aiming at the Internet of Vehicles (IoV), secure pose estimation has become an essential problem for ground vehicles. This paper proposes a pose estimation approach for ground vehicles under randomly occurring deception attacks. By modeling attacks as signals added to measurements with a certain probability, the attack model has been presented and incorporated into the existing process and measurement equations of ground vehicle pose estimation based on multisensor fusion. An unscented Kalman filter-based secure pose estimator is then proposed to generate a stable estimate of the vehicle pose states; i.e., an upper bound for the estimation error covariance is guaranteed. Finally, the simulation and experiments are conducted on a simple but effective single-input-single-output dynamic system and the ground vehicle model to show the effectiveness of UKF-based secure pose estimation. Particularly, the proposed scheme outperforms the conventional Kalman filter, not only by resulting in more accurate estimation but also by providing a theoretically proved upper bound of error covariance matrices that could be used as an indication of the estimator’s status.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3123 ◽  
Author(s):  
Quan Sun ◽  
Hong Zhang ◽  
Jianrong Zhang ◽  
Wentao Ma

As an effective computing technique, Kalman filter (KF) currently plays an important role in state of charge (SOC) estimation in battery management systems (BMS). However, the traditional KF with mean square error (MSE) loss faces some difficulties in handling the presence of non-Gaussian noise in the system. To ensure higher estimation accuracy under this condition, a robust SOC approach using correntropy unscented KF (CUKF) filter is proposed in this paper. The new approach was developed by replacing the MSE in traditional UKF with correntropy loss. As a robust estimation method, CUKF enables the estimate process to be achieved with stable and lower estimation error performance. To further improve the performance of CUKF, an adaptive update strategy of the process and measurement error covariance matrices was introduced into CUKF to design an adaptive CUKF (ACUKF). Experiment results showed that the proposed ACUKF-based SOC estimation method could achieve accurate estimate compared to CUKF, UKF, and adaptive UKF on real measurement data in the presence of non-Gaussian system noises.


Author(s):  
Xiongbin Peng ◽  
Yuwu Li ◽  
Wei Yang ◽  
Akhil Garg

Abstract In the battery thermal management system (BMS), the state of charge (SOC) is a very influential factor, which can prevent overcharge and over-discharge of the lithium-ion battery (LIB). This paper proposed a battery modeling and online battery parameter identification method based on the Thevenin equivalent circuit model (ECM) and recursive least squares (RLS) algorithm. The proposed model proved to have high accuracy. The error between the ECM terminal voltage value and the actual value basically fluctuates between ±0.1V. The extended Kalman filter (EKF) algorithm and the unscented Kalman filter (UKF) algorithm were applied to estimate the SOC of the battery based on the proposed model. The SOC experimental results obtained under dynamic stress test (DST), federal urban driving schedule (FUDS), and US06 cycle conditions were analyzed. The maximum deviation of the SOC based on EKF was 1.4112%~2.5988%, and the maximum deviation of the SOC based on UKF was 0.3172%~0.3388%. The SOC estimation method based on UKF and RLS provides a smaller deviation and better adaptability in different working conditions, which makes it more implementable in a real-world automobile application.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0257849
Author(s):  
Muhammad Wasim ◽  
Ahsan Ali ◽  
Mohammad Ahmad Choudhry ◽  
Faisal Saleem ◽  
Inam Ul Hasan Shaikh ◽  
...  

An airship is lighter than an air vehicle with enormous potential in applications such as communication, aerial inspection, border surveillance, and precision agriculture. An airship model is made up of dynamic, aerodynamic, aerostatic, and propulsive forces. However, the computation of aerodynamic forces remained a challenge. In addition to aerodynamic model deficiencies, airship mass matrix suffers from parameter variations. Moreover, due to the lighter-than-air nature, it is also susceptible to wind disturbances. These modeling issues are the key challenges in developing an efficient autonomous flight controller for an airship. This article proposes a unified estimation method for airship states, model uncertainties, and wind disturbance estimation using Unscented Kalman Filter (UKF). The proposed method is based on a lumped model uncertainty vector that unifies model uncertainties and wind disturbances in a single vector. The airship model is extended by incorporating six auxiliary state variables into the lumped model uncertainty vector. The performance of the proposed methodology is evaluated using a nonlinear simulation model of a custom-developed UETT airship and is validated by conducting a kind of error analysis. For comparative studies, EKF estimator is also developed. The results show the performance superiority of the proposed estimator over EKF; however, the proposed estimator is a bit expensive on computational grounds. However, as per the requirements of the current application, the proposed estimator can be a preferred choice.


Author(s):  
Qizhi He ◽  
Weiguo Zhang ◽  
Degang Huang ◽  
Huakun Chen ◽  
Jinglong Liu

Optimal two stage Kalman filter (OTSKF) is able to obtain optimal estimation of system states and bias for linear system which contains random bias. Unscented Kalman filter (UKF) is a conventional nonlinear filtering method which utilizes Sigmas point sampling and unscented transformation technology realizes propagation of state means and covariances through nonlinear system. Aircraft is a typical complicate nonlinear system, this paper treats the faults of Inertial Measurement Unit (IMU) as random bias, established a filtering model which contains faults of IMU. Hybird the two stage filtering technique and UKF, this paper proposed an optimal two stage unscented Kalman filter (OTSUKF) algorithm which is suitable for fault diagnosis of IMU, realized optimal estimation of system states and faults identification of IMU via proposed innovative designing method of filtering model and the algorithm was validated that it is robust to wind disterbance via real flight data and it is also validated that proposed OTSUKF is optimal in the existance of wind disturbance via comparing with the existance iterated optimal two stage extended kalman filter (IOTSEKF) method.


Author(s):  
Qizhi He ◽  
Weiguo Zhang ◽  
Xiaoxiong Liu ◽  
Weinan Li

In the case of nonlinear systems with random bias, the Optimal Two-Stage Unscented Kalman Filter (OTSUKF) can obtain the optimal estimation of system state and bias. But it requires random bias to be accurately modeled, while it is always very difficult in actual situation because the aircraft is a typical nonlinear system. In this paper, the faults of the Inertial Measurement Unit (IMU) are treated as a random bias, and the random walk model is used to describe the fault. The accuracy of the random walk model depends on the degree of matching between the covariance of the random walk model and the actual situation. For the IMU fault diagnosis method based on OTSUKF, the covariance of the random walk model is assigned with a constant matrix, and the value of the matrix is initialized empirically. It is very difficult to select a matching matrix in practical applications. For this problem, in this paper, the covariance matrix of the random walk model is adaptively adjusted online based on the innovation covariance matching technique, and an adaptive Two-Stage Unscented Kalman Filter (ATSUKF) is proposed to solve the fault diagnosis problem of the IMU. The simulation experiment compares the IMU fault diagnosis performance of OTSUKF and ATSUKF, and verifies the effectiveness of the proposed adaptive method.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ho-Nien Shou

This paper represents orbit propagation and determination of low Earth orbit (LEO) satellites. Satellite global positioning system (GPS) configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP). The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF) method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF). As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5459 ◽  
Author(s):  
Xuliang Lu ◽  
Zhongbin Wang ◽  
Chao Tan ◽  
Haifeng Yan ◽  
Lei Si ◽  
...  

To measure the support attitude of hydraulic support, a support attitude sensing system composed of an inertial measurement unit with microelectromechanical system (MEMS) was designed in this study. Yaw angle estimation with magnetometers is disturbed by the perturbed magnetic field generated by coal rock structure and high-power equipment of shearer in automatic coal mining working face. Roll and pitch angles are estimated using the MEMS gyroscope and accelerometer, and the accuracy is not reliable with time. In order to eliminate the measurement error of the sensors and obtain the high-accuracy attitude estimation of the system, an unscented Kalman filter based on quaternion according to the characteristics of complementation of the magnetometer, accelerometer and gyroscope is applied to optimize the solution of sensor data. Then the gradient descent algorithm is used to optimize the key parameter of unscented Kalman filter, namely process noise covariance, to improve the accuracy of attitude calculation. Finally, an experiment and industrial application show that the average measurement error of yaw angle is less than 2° and that of pitch angle and roll angle is less than 1°, which proves the efficiency and feasibility of the proposed system and method.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 214
Author(s):  
Yanbo Wang ◽  
Fasheng Wang ◽  
Jianjun He ◽  
Fuming Sun

The particle filter method is a basic tool for inference on nonlinear partially observed Markov process models. Recently, it has been applied to solve constrained nonlinear filtering problems. Incorporating constraints could improve the state estimation performance compared to unconstrained state estimation. This paper introduces an iterative truncated unscented particle filter, which provides a state estimation method with inequality constraints. In this method, the proposal distribution is generated by an iterative unscented Kalman filter that is supplemented with a designed truncation method to satisfy the constraints. The detailed iterative unscented Kalman filter and truncation method is provided and incorporated into the particle filter framework. Experimental results show that the proposed algorithm is superior to other similar algorithms.


Sign in / Sign up

Export Citation Format

Share Document