scholarly journals Optimal Size of a Smart Ultra-Fast Charging Station

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2887
Author(s):  
Carola Leone ◽  
Michela Longo ◽  
Luis M. Fernández-Ramírez

An ever-increasing penetration of electric vehicles (EVs) on the roads inevitably leads to an ever-stringent need for an adequate charging infrastructure. The emerging ultra-fast charging (UFC) technology has the potential to provide a refueling experience similar to that of gasoline vehicles; hence, it has a key role in enabling the adoption of EVs for medium-long distance travels. From the perspective of the UFC station, the differences existing in the EVs currently on the market make the sizing problem more challenging. A suitably conceived charging strategy can help to address these concerns. In this paper, we present a smart charging station concept that, through a modular DC/DC stage design, allows the split of the output power among the different charging ports. We model the issue of finding the optimal charging station as a single-objective optimization problem, where the goal is to find the number of modular shared DC/DC converters, and where the power rate of each module ensures the minimum charging time and charging cost. Simulation results show that the proposed solution could significantly reduce the required installed power. In particular, they prove that with an installed power of 800 kW it is possible to satisfy the needs of a UFC station composed of 10 charging spots.

Author(s):  
Carola Leone ◽  
Michela Longo

AbstractRoad transport electrification is essential for meeting the European Union's goals of decarbonization and climate change. In this context, an Ultra-Fast Charging (UFC) system is deemed necessary to facilitate the massive penetration of Electric Vehicles (EVs) on the market; particularly as medium-long distance travels are concerned. Anyway, an ultra-fast charging infrastructure represents the most critical point as regards hardware technology, grid-related issues, and financial sustainability. Thus far, this paper presents an impact analysis of a fast-charging station on the grid in terms of power consumption, obtained by the Monte Carlo simulation. Simulation results show that it is not economical convenient size the assumed ultra-fast charging station for the maximum possible power also considering its high impact on the grid. In view of the results obtained from the impact analysis, the last part of the paper focuses on finding a method to reduce the power installed for the DC/DC stage while keeping the possibility for the electric vehicle to charge at their maximum power. To achieve this goal a modular approach is proposed. Finally, two different modular architectures are presented and compared. In both the solutions, the probability of having EVs charging at limited power is less than 5%.


2018 ◽  
Vol 9 (1) ◽  
pp. 14 ◽  
Author(s):  
Julia Krause ◽  
Stefan Ladwig ◽  
Lotte Saupp ◽  
Denis Horn ◽  
Alexander Schmidt ◽  
...  

Fast-charging infrastructure with charging time of 20–30 min can help minimizing current perceived limitations of electric vehicles, especially considering the unbalanced and incomprehensive distribution of charging options combined with a long perceived charging time. Positioned on optimal location from user and business perspective, the technology is assumed to help increasing the usage of an electric vehicle (EV). Considering the user perspectives, current and potential EV users were interviewed in two different surveys about optimal fast-charging locations depending on travel purposes and relevant location criteria. The obtained results show that customers prefer to rather charge at origins and destinations than during the trip. For longer distances, charging locations on axes with attractive points of interest are also considered as optimal. From the business model point of view, fast-charging stations at destinations are controversial. The expensive infrastructure and the therefore needed large number of charging sessions are in conflict with the comparatively time consuming stay.


2021 ◽  
Vol 12 (3) ◽  
pp. 117
Author(s):  
Suvetha Poyyamani Poyyamani Sunddararaj ◽  
Shriram S. Rangarajan ◽  
Subashini Nallusamy ◽  
E. Randolph Collins ◽  
Tomonobu Senjyu

The consumer adoption of electric vehicles (EVs) has become most popular. Numerous studies are being carried out on the usage of EVs, the challenges of EVs, and their benefits. Based on these studies, factors such as battery charging time, charging infrastructure, battery cost, distance per charge, and the capital cost are considered factors in the adoption of electric vehicles and their interconnection with the grid. The large-scale development of electric vehicles has laid the path to Photovoltaic (PV) power for charging and grid support, as the PV panels can be placed at the top of the smart charging stations connected to a grid. By proper scheduling of PV and grid systems, the V2G connections can be made simple. For reliable operation of the grid, the ramifications associated with the PV interconnection must be properly addressed without any violations. To overcome the above issues, certain standards can be imposed on these systems. This paper mainly focuses on the various standards for EV, PV systems and their interconnection with grid-connected systems.


Author(s):  
Ibrahim El-Fedany ◽  
Driss Kiouach ◽  
Rachid Alaoui

Electric vehicles (EVs) are seen as one of the principal pillars of smart transportation to relieve the airborne pollution induced by fossil CO2 emissions. However, the battery limit, especially where the journey is with a long-distance road remains the most formidable obstacle to the large-scale use of EVs. To overcome the issue of prolonged waiting charging time due to the large number of EVs may have a charging plan at the same charging station (CS) along the highway, we propose a communication system to manage the EVs charging demands. The architecture system contains a smart scheduling algorithm to minimize trip time including waiting time, previous reservations and energyare needed to reach the destination. Moreover, an automatic mechanism for updating reservation is integrated to adjust the EVs charging plans. The results of the evaluation under the Moroccan highway scenario connecting Rabat and Agadir show the effectiveness of our proposal system.<br /><div> </div>


2022 ◽  
pp. 195-207
Author(s):  
Furkan Ahmad ◽  
Essam A. Al-Ammar ◽  
Ibrahim Alsaidan

State-of-the-art research to solve the grid congestion due to EVs is focused on smart charging and using (centralized, de-centralized, vehicle-to-grid) stationery energy storage as a buffer between times of peak and off-peak demand. On the other hand, the charging of EVs introduces new challenges and opportunities. This can prove to be beneficial for the EV aggregator as well as to consumers, regarding the economy. Also, EV as distributed storage makes the grid more steady, secure, and resilient by regulating frequency and the spinning reserve as backup power. However, the charging time and range anxiety lead to peak challenges for the use of EVs. In this chapter battery swapping station (BSS) as solution to the EV charging station is discussed.


Author(s):  
Priya A. Khobragade

: As a ecofriendly electrical vehicle, is vehicles that are used electric motor or traction motor. Are receiving widespread attention around the world due to their improved performance and zero carbon emission . The electric vehicle depend on photovoltaic and battery energy storage system . Electric vehicles include not limited road and railways. It consist of many electric appliances for use in domestic and industrial purposes that is electric car ,electric bike ,electric truck ,electric trolley bus , electric air craft ,electric space craft.The main Moto of this paper is a modelling of proposed system smart charging for electrical vehicle insuring minimum stress on power grid . The large scale development of electrical vehicle we need electric charging station for example fast charging station and super-fast charging station . During a peak demand load , large load on charging station due to the voltage sag , line fault and stress on power grid . At this all problem avoid by multiport converter based EV charging station with PV and BES by using analysis of MATLAB simulation. Result and conclusion of this paper to reduce losses improving efficiency of solar energy , no pollution (reduce) fast charging as possible as without any disturbance.


2021 ◽  
Author(s):  
Tran Van Hung

Electric vehicles have become a trend as a replacement to gasoline-powered vehicles and will be a sustainable substitution to conventional vehicles. As the number of electric vehicles in cities increases, the charging demand has surged. The optimal location of the charging station plays an important role in the electric vehicle transit system. This chapter discusses the planning of electric vehicle charging infrastructure for urban. The purpose of this work develops an electric vehicle fast-charging facility planning model by considering battery degradation and vehicle heterogeneity in driving range, and considering various influencing factors such as traffic conditions, user charging costs, daily travel, charging behavior, and distribution network constraints. This work identifies optimal fast-charging stations to minimize the total cost of the transit system for deploying fast-charging networks. Besides, this chapter also analyzes some optimization modeling approach for the fast charging location planning, and point out future research directions.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8399
Author(s):  
Michéle Weisbach ◽  
Tobias Schneider ◽  
Dominik Maune ◽  
Heiko Fechtner ◽  
Utz Spaeth ◽  
...  

This article deals with the major challenge of electric vehicle charging infrastructure in urban areas—installing as many fast charging stations as necessary and using them as efficiently as possible, while considering grid level power limitations. A smart fast charging station with four vehicle access points and an intelligent load management algorithm based on the combined charging system interface is presented. The shortcomings of present implementations of the combined charging system communication protocol are identified and discussed. Practical experiments and simulations of different charging scenarios validate the concept and show that the concept can increase the utilization time and the supplied energy by a factor of 2.4 compared to typical charging station installations.


2019 ◽  
Vol 100 ◽  
pp. 00018
Author(s):  
Maciej Gis ◽  
Mateusz Bednarski ◽  
Piotr Orliński

Electromobility is a European vision of future motorization. In Poland, there are plans to introduce a million vehicles of this type by 2030. Currently, their share is marginal (about 1 percent). This vision is to be made real. This is due to the fact that vehicle manufacturers are developing newer EV vehicle constructions. Increasing the number of electric vehicles requires the development of their charging infrastructure. Based on the work of the authors regarding the EV vehicle charging network on the Trans-European Transport Network road network, it was possible to extend this issue with energy calculations related to energy demand for supplying the EV vehicle charging network. This is an important topic from the point of view of the State’s energy needs. The calculations made in the article present the problem of the need to increase the production of electricity, which in the case of Poland is associated with increased emissions of harmful substances and the possibility of periodic interruptions in the supply of electricity. Due to excessive domestic consumption with too little production. The second issue is the need to supply electricity to the charging station (infrastructure), as well as transmission losses, which limit the possibility of building multi-station fast charging stations. The issue presented by the authors in this article is one of the key problems relating to the introduction of electromobility in Poland. The key is to determine how large the demand for electricity in the country will be if a greater number of electric vehicles is put into operation. Considering that there are power shortages during a hot summer, this may affect the possibility of using electric vehicles in the country.


Sign in / Sign up

Export Citation Format

Share Document