scholarly journals A smart management system of electric vehicles charging plans on the highway charging stations

Author(s):  
Ibrahim El-Fedany ◽  
Driss Kiouach ◽  
Rachid Alaoui

Electric vehicles (EVs) are seen as one of the principal pillars of smart transportation to relieve the airborne pollution induced by fossil CO2 emissions. However, the battery limit, especially where the journey is with a long-distance road remains the most formidable obstacle to the large-scale use of EVs. To overcome the issue of prolonged waiting charging time due to the large number of EVs may have a charging plan at the same charging station (CS) along the highway, we propose a communication system to manage the EVs charging demands. The architecture system contains a smart scheduling algorithm to minimize trip time including waiting time, previous reservations and energyare needed to reach the destination. Moreover, an automatic mechanism for updating reservation is integrated to adjust the EVs charging plans. The results of the evaluation under the Moroccan highway scenario connecting Rabat and Agadir show the effectiveness of our proposal system.<br /><div> </div>

2021 ◽  
Vol 12 (3) ◽  
pp. 117
Author(s):  
Suvetha Poyyamani Poyyamani Sunddararaj ◽  
Shriram S. Rangarajan ◽  
Subashini Nallusamy ◽  
E. Randolph Collins ◽  
Tomonobu Senjyu

The consumer adoption of electric vehicles (EVs) has become most popular. Numerous studies are being carried out on the usage of EVs, the challenges of EVs, and their benefits. Based on these studies, factors such as battery charging time, charging infrastructure, battery cost, distance per charge, and the capital cost are considered factors in the adoption of electric vehicles and their interconnection with the grid. The large-scale development of electric vehicles has laid the path to Photovoltaic (PV) power for charging and grid support, as the PV panels can be placed at the top of the smart charging stations connected to a grid. By proper scheduling of PV and grid systems, the V2G connections can be made simple. For reliable operation of the grid, the ramifications associated with the PV interconnection must be properly addressed without any violations. To overcome the above issues, certain standards can be imposed on these systems. This paper mainly focuses on the various standards for EV, PV systems and their interconnection with grid-connected systems.


2019 ◽  
Vol 11 (3) ◽  
pp. 643 ◽  
Author(s):  
Jianmin Jia ◽  
Chenhui Liu ◽  
Tao Wan

Electric Vehicles (EVs), by reducing the dependency on fossil fuel and minimizing the traffic-related pollutants emission, are considered as an effective component of a sustainable transportation system. However, the massive penetration of EVs brings a big challenge to the establishment of charging infrastructures. This paper presents the approach to locate charging stations utilizing the reconstructed EVs trajectory derived from the Cellular Signaling Data (CSD). Most previous work focused on the commute trips estimated from the number of jobs and households between traffic analysis zones (TAZs). This paper investigated the large-scale CSD and illustrated the method to generate the 24-hour travel demand for each EV. The complete trip in a day for EV was reconstructed through merging the time sequenced trajectory derived from simulation. This paper proposed a two-step model that grouped the charging demand location into clusters and then identified the charging station site through optimization. The proposed approach was applied to investigate the charging behavior of medium-range EVs with Cellular Signaling Data collected from the China Unicom in Tianjin. The results indicate that over 50% of the charging stations are located within the central urban area. The developed approach could contribute to the planning of future charging stations.


Electric Vehicles (EV) are the world’s future transport systems. With the rise in pollutions and its effects on the environment, there has been a large scale movetowards electrical vehicles. But the plug point availability for charging is the serious problem faced by the mostof Electric Vehicle consumers. Therefore, there is a definite need to move from the GRID based/connected charging stations to standalone off-grid stations for charging the Electric Vehicles. The objective of this paper is to arrive at the best configuration or mix of the renewable resources and energy storage systems along with conventional Diesel Generator set which together works in offgrid for Electric Vehicle charging. As aconclusion, by utilizing self-sustainable off-grid power generation technology, the availability of EV charging stations in remote localities at affordable price can be made and mainly it reduces burden on the existing electrical infrastructure.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4054
Author(s):  
Jean Hassler ◽  
Zlatina Dimitrova ◽  
Marc Petit ◽  
Philippe Dessante

Battery electric vehicles offer many advantages in terms of performance and zero-emission pollutants, but their limited range for long-distance trips compromises their large-scale market penetration. The problem of range can be solved with a dense network of fast-charging stations and an increase in embedded battery capacity. Simultaneously, improvements in high-power charging point units offer range gains of hundreds of kilometers in a mere 20 min. One risk remains: The travel time depends on the availability of charging stations, which can drop during rush hours, due to long queues, or power grid constraints. These situations could significantly affect the user experience. In this paper, we presented an approach to coordinate EV charging station choices in the case of long-distance trips. This system relies on vehicle-to-infrastructure communications (V2X). The objective is to enhance the use of the infrastructure by improving the distribution of vehicles between the different charging stations, thus reducing waiting time. Our target is to build an efficient and easily deployable system. The performance of this system is compared to an uncoordinated situation and an offline optimization. We conducted a case study on a 550-km highway with heavy traffic. With this system, the results showed a 10% reduction in time spent in charging stations.


2020 ◽  
Vol 9 (1) ◽  
pp. 273-283
Author(s):  
Ibrahim El-fedany ◽  
Driss Kiouach ◽  
Rachid Alaoui

The main limitations of electric vehicles are the limited scope of the battery and their relatively long charging times. This may cause discomfort to drivers of electric vehicles due to a long waiting period at the service of the charging station, during their trips. In this paper, we suggest a model system based on argorithms, allowing the management of charging plans of electric vehicles to travel on the road to their destination in order to minimize the duration of the drivers' journey. The proposed system decision to select the charging station, during advance reservation of electric vehicles, take into account the time of arrival of electric vehicles at charging stations, the expected charging time at charging stations, the local status of the charging stations in real time, and the amount of energy sufficient for the electric vehicle to arrive at the selected charging station. Furthermore, the system periodically updates the electric vehicule reservations to adjust their recharge plans, when they reach their selected earlier station compared to other vehicules requesting new reservations, or they may not arrive as they were forecast, due to traffic jams on the road or certain reluctance on the part of the driver.


2020 ◽  
Vol 19 (1) ◽  
pp. 76-84
Author(s):  
W. Cheng ◽  
Y. Wang

With the large-scale application of electric vehicles (EV) in the world and also in China, the contradiction between the EV and charging stations has become more and more prominent. People always cannot easily find the charging stations or when they find them finally found they do not work. To connect the vehicle, charging station/pile and end-users for making the charging simple, convenient, efficient and visible is becoming very important. People need a platform to tell them where, when and how to charge for their EV. Matrix Mobility is focusing on realizing this comprehensive charging solution together with OEM, charging point operator (CPO), electric power company and parking lots by using big data analysis. Matrix Mobility installs the charging solution into the car unit before cars go off production line and meanwhile integrates the same function into OEM’s own APP with opening API to help end-users increase their charging experience.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1915 ◽  
Author(s):  
Tao Yi ◽  
Xiao-bin Cheng ◽  
Hao Zheng ◽  
Jin-peng Liu

The development of electric vehicles has significant value for the sustainable utilization of energy resources. However, the unreasonable construction of charging stations causes problems such as low user satisfaction, waste of land resources, unstable power systems, and so on. Reasonable planning of the location and capacity of charging stations is of great significance to users, investors and power grids. This paper synthetically considers three indicators of user satisfaction: charging convenience, charging cost and charging time. Considering the load and charging requirements, the model of electric vehicle charging station location and volume is established, and the model based on artificial immune algorithm is used to optimize the solution. An empirical analysis was conducted based on a typical regional survey. The research results show that increasing the density of charging stations, lowering the charging price and shortening the charging time can effectively improve user satisfaction. The constructed site and capacity selection optimization solving model can scientifically guide charging station resource allocation under the constraints of the optimal user comprehensive satisfaction target, improve the capacity of scientific planning and resource allocation of regional electric vehicle charging stations, and support the large-scale promotion and application of electric vehicles.


2021 ◽  
Vol 13 (11) ◽  
pp. 6163
Author(s):  
Yongyi Huang ◽  
Atsushi Yona ◽  
Hiroshi Takahashi ◽  
Ashraf Mohamed Hemeida ◽  
Paras Mandal ◽  
...  

Electric vehicle charging station have become an urgent need in many communities around the world, due to the increase of using electric vehicles over conventional vehicles. In addition, establishment of charging stations, and the grid impact of household photovoltaic power generation would reduce the feed-in tariff. These two factors are considered to propose setting up charging stations at convenience stores, which would enable the electric energy to be shared between locations. Charging stations could collect excess photovoltaic energy from homes and market it to electric vehicles. This article examines vehicle travel time, basic household energy demand, and the electricity consumption status of Okinawa city as a whole to model the operation of an electric vehicle charging station for a year. The entire program is optimized using MATLAB mixed integer linear programming (MILP) toolbox. The findings demonstrate that a profit could be achieved under the principle of ensuring the charging station’s stable service. Household photovoltaic power generation and electric vehicles are highly dependent on energy sharing between regions. The convenience store charging station service strategy suggested gives a solution to the future issues.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2820 ◽  
Author(s):  
Hui Sun ◽  
Peng Yuan ◽  
Zhuoning Sun ◽  
Shubo Hu ◽  
Feixiang Peng ◽  
...  

With the popularization of electric vehicles, free charging behaviors of electric vehicle owners can lead to uncertainty about charging in both time and space. A time-spatial dispatching strategy for the distribution network guided by electric vehicle charging fees is proposed in this paper, which aims to solve the network congestion problem caused by the unrestrained and free charging behaviors of large numbers of electric vehicles. In this strategy, congestion severity of different lines is analyzed and the relationship between the congested lines and the charging stations is clarified. A price elastic matrix is introduced to reflect the degree of owners’ response to the charging prices. A pricing scheme for optimal real-time charging fees for multiple charging stations is designed according to the congestion severity of the lines and the charging power of the related charging stations. Charging price at different charging station at different time is different, it can influence the charging behaviors of vehicle owners. The simulation results confirmed that the proposed congestion dispatching strategy considers the earnings of the operators, charging cost to the owners and the satisfaction of the owners. Moreover, the strategy can influence owners to make judicious charging plans that help to solve congestion problems in the network and improve the safety and economy of the power grid.


2018 ◽  
Vol 10 (9) ◽  
pp. 3267 ◽  
Author(s):  
Shaohua Cui ◽  
Hui Zhao ◽  
Huijie Wen ◽  
Cuiping Zhang

As environmental and energy issues have attracted more and more attention from the public, research on electric vehicles has become extensive and in-depth. As driving range limit is one of the key factors restricting the development of electric vehicles, the energy supply of electric vehicles mainly relies on the building of charging stations, battery swapping stations, and wireless charging lanes. Actually, the latter two kinds of infrastructure are seldom employed due to their immature technology, relatively large construction costs, and difficulty in standardization. Currently, charging stations are widely used since, in the real world, there are different types of charging station with various levels which could be suitable for the needs of network users. In the past, the study of the location charging stations for battery electric vehicles did not take the different sizes and different types into consideration. In fact, it is of great significance to set charging stations with multiple sizes and multiple types to meet the needs of network users. In the paper, we define the model as a location problem in a capacitated network with an agent technique using multiple sizes and multiple types and formulate the model as a 0–1 mixed integer linear program (MILP) to minimize the total trip travel time of all agents. Finally, we demonstrate the model through numerical examples on two networks and make sensitivity analyses on total budget, initial quantity, and the anxious range of agents accordingly. The results show that as the initial charge increases or the budget increases, travel time for all agents can be reduced; a reduction in range anxiety can increase travel time for all agents.


Sign in / Sign up

Export Citation Format

Share Document