scholarly journals Research on Co-Estimation Algorithm of SOC and SOH for Lithium-Ion Batteries in Electric Vehicles

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 181
Author(s):  
Chang-Qing Du ◽  
Jian-Bo Shao ◽  
Dong-Mei Wu ◽  
Zhong Ren ◽  
Zhong-Yi Wu ◽  
...  

The accurate estimation of the state of charge (SOC) and state of health (SOH) is of great significance to energy management and safety in electric vehicles. To achieve a good trade-off between real-time capability and estimation accuracy, a collaborative estimation algorithm for SOC and SOH is presented based on the Thevenin equivalent circuit model, which combines the recursive least squares method with a forgetting factor and the extended Kalman filter. First, the parameter identification accuracy is studied under a dynamic stress test (DST) and the federal urban driving schedule (FUDS) test at different ambient temperatures (0 °C, 25 °C, and 45 °C). Secondly, the FUDS test is used to verify the SOC estimation accuracy. Thirdly, two batteries with different aging degrees are used to validate the proposed SOH estimation algorithm. Subsequently, the accuracy of the SOC estimation algorithm is studied, considering the influence of updating the SOH. The proposed SOC estimation algorithm can achieve good performance at different ambient temperatures (0 °C, 25 °C, and 45 °C), with a maximum error of less than 2.3%. The maximum error for the SOH is less than 4.3% for two aged batteries at 25 °C, and it can be reduced to 1.4% after optimization. Furthermore, calibrating the capacity as the SOH changes can effectively improve the SOC estimation accuracy over the whole battery life.

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 122
Author(s):  
Peipei Xu ◽  
Junqiu Li ◽  
Chao Sun ◽  
Guodong Yang ◽  
Fengchun Sun

The accurate estimation of a lithium-ion battery’s state of charge (SOC) plays an important role in the operational safety and driving mileage improvement of electrical vehicles (EVs). The Adaptive Extended Kalman filter (AEKF) estimator is commonly used to estimate SOC; however, this method relies on the precise estimation of the battery’s model parameters and capacity. Furthermore, the actual capacity and battery parameters change in real time with the aging of the batteries. Therefore, to eliminate the influence of above-mentioned factors on SOC estimation, the main contributions of this paper are as follows: (1) the equivalent circuit model (ECM) is presented, and the parameter identification of ECM is performed by using the forgetting-factor recursive-least-squares (FFRLS) method; (2) the sensitivity of battery SOC estimation to capacity degradation is analyzed to prove the importance of considering capacity degradation in SOC estimation; and (3) the capacity degradation model is proposed to perform the battery capacity prediction online. Furthermore, an online adaptive SOC estimator based on capacity degradation is proposed to improve the robustness of the AEKF algorithm. Experimental results show that the maximum error of SOC estimation is less than 1.3%.


2019 ◽  
Vol 118 ◽  
pp. 02025 ◽  
Author(s):  
Kaihui Feng ◽  
Bibin Huang ◽  
Qionghui Li ◽  
Hu Yan

The purpose of this paper is to discuss how to eliminate the influence of noise time -varying characteristics on the accuracy of SOC estimation. Based on the matlab/simulink platform, the Thevenin equivalent circuit model of the battery is built, and an improved Adaptive Extend Kalman Filter (AEKF) is designed, which is compared with the Extend Kalman filter algorithm (EKF).The simulation results are shown that the improved AEKF algorithm results in effective online estimation SOC and the estimation accuracy is higher than the EKF algorithm.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1785 ◽  
Author(s):  
Guoqing Jin ◽  
Lan Li ◽  
Yidan Xu ◽  
Minghui Hu ◽  
Chunyun Fu ◽  
...  

Accurate estimation of the state of charge (SOC) is an important criterion to prevent the batteries from being over-charged or over-discharged, and this assures an electric vehicle’s safety and reliability. To investigate the effect of different operating conditions on the SOC estimation results, a dual-polarization model (DPM) and a fractional-order model (FOM) are established in this study, taking into account the prediction accuracy and structural complexity of a battery model. Based on these two battery equivalent circuit models (ECMs), a hybrid Kalman filter (HKF) algorithm is adopted to estimate the SOC of the battery; the algorithm comprehensively utilizes the ampere-hour (Ah) integration method, the Kalman filter (KF) algorithm, and the extended Kalman filter (EKF) algorithm. The SOC estimation results of the DPM and FOM, under the dynamic stress test (DST), federal urban driving schedule (FUDS), and hybrid pulse power characteristic (HPPC) cycle conditions, are compared and analyzed through six sets of experiments. Simulation results show that the SOC estimation accuracy of both the models is high and that the errors are within the range of ±0.06. Under any operating conditions, the SOC estimation error, based on the FOM, is always lower than the SOC estimation error of the DPM, but the adaptability of the FOM is not as high as that of the DPM.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 324
Author(s):  
Haobin Jiang ◽  
Xijia Chen ◽  
Yifu Liu ◽  
Qian Zhao ◽  
Huanhuan Li ◽  
...  

Accurately estimating the online state-of-charge (SOC) of the battery is one of the crucial issues of the battery management system. In this paper, the gas–liquid dynamics (GLD) battery model with direct temperature input is selected to model Li(NiMnCo)O2 battery. The extended Kalman Filter (EKF) algorithm is elaborated to couple the offline model and online model to achieve the goal of quickly eliminating initial errors in the online SOC estimation. An implementation of the hybrid pulse power characterization test is performed to identify the offline parameters and determine the open-circuit voltage vs. SOC curve. Apart from the standard cycles including Constant Current cycle, Federal Urban Driving Schedule cycle, Urban Dynamometer Driving Schedule cycle and Dynamic Stress Test cycle, a combined cycle is constructed for experimental validation. Furthermore, the study of the effect of sampling time on estimation accuracy and the robustness analysis of the initial value are carried out. The results demonstrate that the proposed method realizes the accurate estimation of SOC with a maximum mean absolute error at 0.50% in five working conditions and shows strong robustness against the sparse sampling and input error.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110277
Author(s):  
Yankai Hou ◽  
Zhaosheng Zhang ◽  
Peng Liu ◽  
Chunbao Song ◽  
Zhenpo Wang

Accurate estimation of the degree of battery aging is essential to ensure safe operation of electric vehicles. In this paper, using real-world vehicles and their operational data, a battery aging estimation method is proposed based on a dual-polarization equivalent circuit (DPEC) model and multiple data-driven models. The DPEC model and the forgetting factor recursive least-squares method are used to determine the battery system’s ohmic internal resistance, with outliers being filtered using boxplots. Furthermore, eight common data-driven models are used to describe the relationship between battery degradation and the factors influencing this degradation, and these models are analyzed and compared in terms of both estimation accuracy and computational requirements. The results show that the gradient descent tree regression, XGBoost regression, and light GBM regression models are more accurate than the other methods, with root mean square errors of less than 6.9 mΩ. The AdaBoost and random forest regression models are regarded as alternative groups because of their relative instability. The linear regression, support vector machine regression, and k-nearest neighbor regression models are not recommended because of poor accuracy or excessively high computational requirements. This work can serve as a reference for subsequent battery degradation studies based on real-time operational data.


Author(s):  
Xiongbin Peng ◽  
Yuwu Li ◽  
Wei Yang ◽  
Akhil Garg

Abstract In the battery thermal management system (BMS), the state of charge (SOC) is a very influential factor, which can prevent overcharge and over-discharge of the lithium-ion battery (LIB). This paper proposed a battery modeling and online battery parameter identification method based on the Thevenin equivalent circuit model (ECM) and recursive least squares (RLS) algorithm. The proposed model proved to have high accuracy. The error between the ECM terminal voltage value and the actual value basically fluctuates between ±0.1V. The extended Kalman filter (EKF) algorithm and the unscented Kalman filter (UKF) algorithm were applied to estimate the SOC of the battery based on the proposed model. The SOC experimental results obtained under dynamic stress test (DST), federal urban driving schedule (FUDS), and US06 cycle conditions were analyzed. The maximum deviation of the SOC based on EKF was 1.4112%~2.5988%, and the maximum deviation of the SOC based on UKF was 0.3172%~0.3388%. The SOC estimation method based on UKF and RLS provides a smaller deviation and better adaptability in different working conditions, which makes it more implementable in a real-world automobile application.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 260
Author(s):  
Mahendiran T. Vellingiri ◽  
Ibrahim M. Mehedi ◽  
Thangam Palaniswamy

In recent years, alternative engine technologies are necessary to resolve the problems related to conventional vehicles. Electric vehicles (EVs) and hybrid electric vehicles (HEVs) are effective solutions to decarbonize the transportation sector. It also becomes important to shift from traditional houses to smart houses and from classical vehicles to EVs or HEVs. It is needed to combine renewable energy sources (RESs) such as solar photovoltaics, wind energy systems, and various forms of bio-energies. Among various HEV technologies, an effective battery management system (BMS) still remains a crucial issue that is majorly used for indicating the battery state of charge (SOC). Since over-charging and over-discharging result in inevitable impairment to the batteries, accurate SOC estimation desires to be presented by the BMS. Although several SOC estimation techniques exist to regulate the SOC of the battery cell, it is needed to improvise the SOC estimation performance on HEVs. In this view, this paper focuses on the design of a novel deep learning (DL) with SOC estimation model for secure renewable energy management (DLSOC-REM) technique for HEVs. The presented model employs a hybrid convolution neural network and long short-term memory (HCNN-LSTM) model for the accurate estimation of SOC. In order to improve the SOC estimation outcomes of the HCNN-LSTM model, the barnacles mating optimizer (BMO) is applied for the hyperpower tuning process. The utilization of the HCNN-LSTM model makes the modeling process easier and offers a precise depiction of the input–output relationship of the battery model. The design of BMO based HCNN-LSTM model for SOC estimation shows the novelty of the work. An extensive experimental analysis highlighted the supremacy of the proposed model over other existing methods in terms of different aspects.


2021 ◽  
Vol 11 (24) ◽  
pp. 11797
Author(s):  
Dongdong Ge ◽  
Zhendong Zhang ◽  
Xiangdong Kong ◽  
Zhiping Wan

The accurate state of charge (SoC) online estimation for lithium-ion batteries is a primary concern for predicting the remaining range in electric vehicles. The Sigma points Kalman Filter is an emerging SoC filtering technology. Firstly, the charge and discharge tests of the battery were carried out using the interval static method to obtain the accurate calibration of the SoC-OCV (open circuit voltage) relationship curve. Secondly, the recursive least squares method (RLS) was combined with the dynamic stress test (DST) to identify the parameters of the second-order equivalent circuit model (ECM) and establish a non-linear state-space model of the lithium-ion battery. Thirdly, based on proportional correction sampling and symmetric sampling Sigma points, an SoC estimation method combining unscented transformation and Stirling interpolation center difference was designed. Finally, a semi-physical simulation platform was built. The Federal Urban Driving Schedule and US06 Highway Driving Schedule operating conditions were used to verify the effectiveness of the proposed estimation method in the presence of initial SoC errors and compare with the EKF (extended Kalman filter), UKF (unscented Kalman filter) and CDKF (central difference Kalman filter) algorithms. The results showed that the new algorithm could ensure an SoC error within 2% under the two working conditions and quickly converge to the reference value when the initial SoC value was inaccurate, effectively improving the initial error correction ability.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3365
Author(s):  
Tae-Won Noh ◽  
Jung-Hoon Ahn ◽  
Byoung Kuk Lee

The terminal voltage of a starting–lighting–ignition (SLI) battery can decrease to a value lower than the allowable voltage range because of the high discharge current required to crank the engine of a vehicle. To avoid the safety problems generated by this voltage drop, this paper proposes a cranking capability estimation algorithm. The proposed algorithm includes an equivalent circuit model for describing the instantaneous voltage response to the cranking current profile. This algorithm predicts the minimum value of the terminal voltage for the cranking transient period by analyzing the polarization voltage and dynamic characteristic of the equivalent circuit model. The estimation accuracy is adjusted by an online update for the parameters of the equivalent circuit model, which varies with temperature, aging, and other factors. The proposed algorithm was validated by experiments with a 60Ah LiFePO4-type SLI battery.


Sign in / Sign up

Export Citation Format

Share Document