scholarly journals Effect of Top Channel Thickness in Near Infrared Organic Phototransistors with Conjugated Polymer Gate-Sensing Layers

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1493 ◽  
Author(s):  
Jisu Park ◽  
Hwajeong Kim ◽  
Taehoon Kim ◽  
Chulyeon Lee ◽  
Dong-Ik Song ◽  
...  

Here, we report the thickness effect of top channel layers (CLs) on the performance of near infrared (NIR)-detecting organic phototransistors (OPTRs) with conjugated polymer gate-sensing layers (GSLs). Poly(3-hexylthiophene) (P3HT) was employed as a top CL, while poly[{2,5-bis-(2-octyldodecyl)-3,6-bis-(thien-2-yl)-pyrrolo[3,4-c]pyrrole-1,4-diyl}-co-{2,2′-(2,1,3-benzothiadiazole)-5,5′-diyl}] (PODTPPD-BT) was used as a GSL. The thickness of P3HT CLs was varied from 10 to 70 nm. Three different wavelengths of NIR light (λ = 780, 905, and 1000 nm) were introduced and their light intensity was fixed to 0.27 mW cm−2. Results showed that all fabricated devices exhibited typical p-channel transistor behaviors and the highest drain current in the dark was obtained at the P3HT thickness (t) of 50 nm. The NIR illumination test revealed that the NIR photoresponsivity (RC) of GSL-OPTRs could be achieved at t = 50 nm irrespective of the NIR wavelength. The maximum RC of the optimized devices (t = 50 nm) reached ca. 61% at λ = 780 nm and ca. 47% at λ = 1000 nm compared to the theoretical maximum photoresponsivity.

2019 ◽  
Vol 55 (59) ◽  
pp. 8615-8618 ◽  
Author(s):  
Sirong Zhou ◽  
Changgang Yang ◽  
Lixia Guo ◽  
Yunxia Wang ◽  
Guofeng Zhang ◽  
...  

A novel NIR-absorbing and water-soluble conjugated polymer (PTDBD) for single-NIR-light induced synergetic photothermal/photodynamic therapy was developed.


2020 ◽  
Author(s):  
Alex Stafford ◽  
Dowon Ahn ◽  
Emily Raulerson ◽  
Kun-You Chung ◽  
Kaihong Sun ◽  
...  

Driving rapid polymerizations with visible to near-infrared (NIR) light will enable nascent technologies in the emerging fields of bio- and composite-printing. However, current photopolymerization strategies are limited by long reaction times, high light intensities, and/or large catalyst loadings. Improving efficiency remains elusive without a comprehensive, mechanistic evaluation of photocatalysis to better understand how composition relates to polymerization metrics. With this objective in mind, a series of methine- and aza-bridged boron dipyrromethene (BODIPY) derivatives were synthesized and systematically characterized to elucidate key structure-property relationships that facilitate efficient photopolymerization driven by visible to NIR light. For both BODIPY scaffolds, halogenation was shown as a general method to increase polymerization rate, quantitatively characterized using a custom real-time infrared spectroscopy setup. Furthermore, a combination of steady-state emission quenching experiments, electronic structure calculations, and ultrafast transient absorption revealed that efficient intersystem crossing to the lowest excited triplet state upon halogenation was a key mechanistic step to achieving rapid photopolymerization reactions. Unprecedented polymerization rates were achieved with extremely low light intensities (< 1 mW/cm<sup>2</sup>) and catalyst loadings (< 50 μM), exemplified by reaction completion within 60 seconds of irradiation using green, red, and NIR light-emitting diodes.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jinsong Xiong ◽  
Qinghuan Bian ◽  
Shuijin Lei ◽  
Yatian Deng ◽  
Kehan Zhao ◽  
...  

Near-infrared (NIR) light induced photothermal cancer therapy using nanomaterials as photothermal agents has attracted considerable research interest over the past few years. As the key factor in the photothermal therapy...


ACS Nano ◽  
2021 ◽  
Author(s):  
Miao Zhao ◽  
Edward Leggett ◽  
Struan Bourke ◽  
Souzana Poursanidou ◽  
Sadie Carter-Searjeant ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Manoj Kumar Mahata ◽  
Ranjit De ◽  
Kang Taek Lee

Due to the unique properties of lanthanide-doped upconverting nanoparticles (UCNP) under near-infrared (NIR) light, the last decade has shown a sharp progress in their biomedicine applications. Advances in the techniques for polymer, dye, and bio-molecule conjugation on the surface of the nanoparticles has further expanded their dynamic opportunities for optogenetics, oncotherapy and bioimaging. In this account, considering the primary benefits such as the absence of photobleaching, photoblinking, and autofluorescence of UCNPs not only facilitate the construction of accurate, sensitive and multifunctional nanoprobes, but also improve therapeutic and diagnostic results. We introduce, with the basic knowledge of upconversion, unique properties of UCNPs and the mechanisms involved in photon upconversion and discuss how UCNPs can be implemented in biological practices. In this focused review, we categorize the applications of UCNP-based various strategies into the following domains: neuromodulation, immunotherapy, drug delivery, photodynamic and photothermal therapy, bioimaging and biosensing. Herein, we also discuss the current emerging bioapplications with cutting edge nano-/biointerfacing of UCNPs. Finally, this review provides concluding remarks on future opportunities and challenges on clinical translation of UCNPs-based nanotechnology research.


Author(s):  
Jiaxin Shen ◽  
Dandan Chen ◽  
Ye Liu ◽  
Guoyang Gao ◽  
Zhihe Liu ◽  
...  

Photodynamic therapy (PDT) is a promising method for cancer therapy and also may initiate unexpected damages to normal cells and tissues. Herein, we developed a near-infrared (NIR) light-activatable nanophotosensitizer, which...


2021 ◽  
Vol 93 (6) ◽  
pp. 3189-3195
Author(s):  
Jiayingzi Wu ◽  
Liyan You ◽  
Saadia T. Chaudhry ◽  
Jiazhi He ◽  
Ji-Xin Cheng ◽  
...  

2015 ◽  
Vol 6 (21) ◽  
pp. 3962-3969 ◽  
Author(s):  
Chunhui Dai ◽  
Dongliang Yang ◽  
Wenjie Zhang ◽  
Biqing Bao ◽  
Yixiang Cheng ◽  
...  

We prepared a series of novel chiral far-red/near-infrared fluorescent CPNs with different nanoparticle sizes, which show size-dependent chirality and are successfully employed for cell imaging.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mary K. Popp ◽  
Imane Oubou ◽  
Colin Shepherd ◽  
Zachary Nager ◽  
Courtney Anderson ◽  
...  

Photothermal therapy (PTT) treatments have shown strong potential in treating tumors through their ability to target destructive heat preferentially to tumor regions. In this paper we demonstrate that PTT in a murine melanoma model using gold nanorods (GNRs) and near-infrared (NIR) light decreases tumor volume and increases animal survival to an extent that is comparable to the current generation of melanoma drugs. GNRs, in particular, have shown a strong ability to reach ablative temperatures quickly in tumors when exposed to NIR light. The current research tests the efficacy of GNRs PTT in a difficult and fast growing murine melanoma model using a NIR light-emitting diode (LED) light source. LED light sources in the NIR spectrum could provide a safer and more practical approach to photothermal therapy than lasers. We also show that the LED light source can effectively and quickly heatin vitroandin vivomodels to ablative temperatures when combined with GNRs. We anticipate that this approach could have significant implications for human cancer therapy.


2018 ◽  
Vol 115 (3) ◽  
pp. 501-506 ◽  
Author(s):  
Meng Qiu ◽  
Dou Wang ◽  
Weiyuan Liang ◽  
Liping Liu ◽  
Yin Zhang ◽  
...  

A biodegradable drug delivery system (DDS) is one the most promising therapeutic strategies for cancer therapy. Here, we propose a unique concept of light activation of black phosphorus (BP) at hydrogel nanostructures for cancer therapy. A photosensitizer converts light into heat that softens and melts drug-loaded hydrogel-based nanostructures. Drug release rates can be accurately controlled by light intensity, exposure duration, BP concentration, and hydrogel composition. Owing to sufficiently deep penetration of near-infrared (NIR) light through tissues, our BP-based system shows high therapeutic efficacy for treatment of s.c. cancers. Importantly, our drug delivery system is completely harmless and degradable in vivo. Together, our work proposes a unique concept for precision cancer therapy by external light excitation to release cancer drugs. If these findings are successfully translated into the clinic, millions of patients with cancer will benefit from our work.


Sign in / Sign up

Export Citation Format

Share Document