scholarly journals A Review of Relay Assignment Problem in the Cooperative Wireless Sensor Networks

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 443
Author(s):  
Mohammed S. Al-kahtani

The relay selection is a promising approach of maximizing the diversity gain achieved in the cooperative wireless sensor networks. In the cooperative networks, the proper selection of relay node is a challenging task. The proper selection of relay nodes not only improves the source–destination performance, but also maximizes the overall system performance. There are many factors involved in designing a relay selection algorithm. The different relay selection algorithms have different focus, criteria, objective, mechanism, and performance issues. In this article, several relay assignment algorithms have been analyzed to show the effectiveness of channel capacity, power allocation, coverage expansion and interference mitigation in term of proper relay selection schemes. Moreover, this paper discusses some relay selection schemes, their challenging issues, limitations, performance criteria, and mechanisms. This article also highlights the significant design issues of relay selection methods and compares them that are appropriate in the cooperative wireless sensor networks.


2019 ◽  
Author(s):  
Abhishek Verma ◽  
Virender Ranga

Relay node placement in wireless sensor networks for constrained environment is a critical task due to various unavoidable constraints. One of the most important constraints is unpredictable obstacles. Handling obstacles during relay node placement is complicated because of complexity involved to estimate the shape and size of obstacles. This paper presents an Obstacle-resistant relay node placement strategy (ORRNP). The proposed solution not only handles the obstacles but also estimates best locations for relay node placement in the network. It also does not involve any additional hardware (mobile robots) to estimate node locations thus can significantly reduce the deployment costs. Simulation results show the effectiveness of our proposed approach.





Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2328 ◽  
Author(s):  
Juan Feng ◽  
Xiaozhu Shi

In target tracking wireless sensor networks, choosing a part of sensor nodes to execute tracking tasks and letting the other nodes sleep to save energy are efficient node management strategies. However, at present more and more sensor nodes carry many different types of sensed modules, and the existing researches on node selection are mainly focused on sensor nodes with a single sensed module. Few works involved the management and selection of the sensed modules for sensor nodes which have several multi-mode sensed modules. This work proposes an efficient node and sensed module management strategy, called ENSMM, for multisensory WSNs (wireless sensor networks). ENSMM considers not only node selection, but also the selection of the sensed modules for each node, and then the power management of sensor nodes is performed according to the selection results. Moreover, a joint weighted information utility measurement is proposed to estimate the information utility of the multiple sensed modules in the different nodes. Through extensive and realistic experiments, the results show that, ENSMM outperforms the state-of-the-art approaches by decreasing the energy consumption and prolonging the network lifetime. Meanwhile, it reduces the computational complexity with guaranteeing the tracking accuracy.



2021 ◽  
Author(s):  
Huangshui Hu ◽  
Yuxin Guo ◽  
Jinfeng Zhang ◽  
Chunhua Yin ◽  
Dong Gao

Abstract In order to solve the problem of hot spot caused by uneven energy consumption of nodes in Wireless Sensor Networks (WSNs) and reduce the network energy consumption, a novel cluster routing algorithm called CRPL for ring based wireless sensor networks using Particle Swarm Optimization (PSO) and Lion Swarm Optimization (LSO) is proposed in this paper. In CRPL, the optimal cluster head (CH) of each ring are selected by using LSO whose fitness function is composed of energy,number of neighbor nodes, number of cluster heads and distance. Moreover, PSO with a multi-objective fitness function considering distance, energy and cluster size is used to find the next hop relay node in the process of data transmission, and the optimal routing paths are obtained, so as to alleviate the hot spot problem as well as decrease the energy consumption in the routing process. The simulation results show that, compared with some existing optimization algorithms, CRPL has better effects in balancing the energy consumption of the network and prolonging the life cycle of the network.



Sign in / Sign up

Export Citation Format

Share Document