scholarly journals Performance of Two Approaches of Embedded Recommender Systems

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 546 ◽  
Author(s):  
Francisco Pajuelo-Holguera ◽  
Juan A. Gómez-Pulido ◽  
Fernando Ortega

Nowadays, highly portable and low-energy computing environments require programming applications able to satisfy computing time and energy constraints. Furthermore, collaborative filtering based recommender systems are intelligent systems that use large databases and perform extensive matrix arithmetic calculations. In this research, we present an optimized algorithm and a parallel hardware implementation as good approach for running embedded collaborative filtering applications. To this end, we have considered high-level synthesis programming for reconfigurable hardware technology. The design was tested under environments where usual parameters and real-world datasets were applied, and compared to usual microprocessors running similar implementations. The performance results obtained by the different implementations were analyzed in computing time and energy consumption terms. The main conclusion is that the optimized algorithm is competitive in embedded applications when considering large datasets and parallel implementations based on reconfigurable hardware.

Author(s):  
Guibing Guo ◽  
Enneng Yang ◽  
Li Shen ◽  
Xiaochun Yang ◽  
Xiaodong He

Trust-aware recommender systems have received much attention recently for their abilities to capture the influence among connected users. However, they suffer from the efficiency issue due to large amount of data and time-consuming real-valued operations. Although existing discrete collaborative filtering may alleviate this issue to some extent, it is unable to accommodate social influence. In this paper we propose a discrete trust-aware matrix factorization (DTMF) model to take dual advantages of both social relations and discrete technique for fast recommendation. Specifically, we map the latent representation of users and items into a joint hamming space by recovering the rating and trust interactions between users and items. We adopt a sophisticated discrete coordinate descent (DCD) approach to optimize our proposed model. In addition, experiments on two real-world datasets demonstrate the superiority of our approach against other state-of-the-art approaches in terms of ranking accuracy and efficiency.


2021 ◽  
Vol 11 (19) ◽  
pp. 8993
Author(s):  
Qinglong Li ◽  
Jaekyeong Kim

Recently, the worldwide COVID-19 pandemic has led to an increasing demand for online education platforms. However, it is challenging to correctly choose course content from among many online education resources due to the differences in users’ knowledge structures. Therefore, a course recommender system has the essential role of improving the learning efficiency of users. At present, many online education platforms have built diverse recommender systems that utilize traditional data mining methods, such as Collaborative Filtering (CF). Despite the development and contributions of many recommender systems based on CF, diverse deep learning models for personalized recommendation are being studied because of problems such as sparsity and scalability. Therefore, to solve traditional recommendation problems, this study proposes a novel deep learning-based course recommender system (DECOR), which elaborately captures high-level user behaviors and course attribute features. The DECOR model can reduce information overload, solve high-dimensional data sparsity problems, and achieve high feature information extraction performance. We perform several experiments utilizing real-world datasets to evaluate the DECOR model’s performance compared with that of traditional recommendation approaches. The experimental results indicate that the DECOR model offers better and more robust recommendation performance than the traditional methods.


2021 ◽  
Vol 11 (6) ◽  
pp. 2510
Author(s):  
Aaron Ling Chi Yi ◽  
Dae-Ki Kang

Location-based recommender systems have gained a lot of attention in both commercial domains and research communities where there are various approaches that have shown great potential for further studies. However, there has been little attention in previous research on location-based recommender systems for generating recommendations considering the locations of target users. Such recommender systems sometimes recommend places that are far from the target user’s current location. In this paper, we explore the issues of generating location recommendations for users who are traveling overseas by taking into account the user’s social influence and also the native or local expert’s knowledge. Accordingly, we have proposed a collaborative filtering recommendation framework called the Friend-And-Native-Aware Approach for Collaborative Filtering (FANA-CF), to generate reasonable location recommendations for users. We have validated our approach by systematic and extensive experiments using real-world datasets collected from Foursquare TM. By comparing algorithms such as the collaborative filtering approach (item-based collaborative filtering and user-based collaborative filtering) and the personalized mean approach, we have shown that our proposed approach has slightly outperformed the conventional collaborative filtering approach and personalized mean approach.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Lei Guo ◽  
Haoran Jiang ◽  
Xiyu Liu ◽  
Changming Xing

As one of the important techniques to explore unknown places for users, the methods that are proposed for point-of-interest (POI) recommendation have been widely studied in recent years. Compared with traditional recommendation problems, POI recommendations are suffering from more challenges, such as the cold-start and one-class collaborative filtering problems. Many existing studies have focused on how to overcome these challenges by exploiting different types of contexts (e.g., social and geographical information). However, most of these methods only model these contexts as regularization terms, and the deep information hidden in the network structure has not been fully exploited. On the other hand, neural network-based embedding methods have shown its power in many recommendation tasks with its ability to extract high-level representations from raw data. According to the above observations, to well utilize the network information, a neural network-based embedding method (node2vec) is first exploited to learn the user and POI representations from a social network and a predefined location network, respectively. To deal with the implicit feedback, a pair-wise ranking-based method is then introduced. Finally, by regarding the pretrained network representations as the priors of the latent feature factors, an embedding-based POI recommendation method is proposed. As this method consists of an embedding model and a collaborative filtering model, when the training data are absent, the predictions will mainly be generated by the extracted embeddings. In other cases, this method will learn the user and POI factors from these two components. Experiments on two real-world datasets demonstrate the importance of the network embeddings and the effectiveness of our proposed method.


2018 ◽  
Vol 7 (4.38) ◽  
pp. 213
Author(s):  
Rajesh Kumar Ojha ◽  
Dr. Bhagirathi Nayak

Recommender systems are one of the important methodologies in machine learning technologies, which is using in current business scenario. This article proposes a book recommender system using deep learning technique and k-Nearest Neighbors (k-NN) classification. Deep learning technique is one of the most effective techniques in the field of recommender systems. Recommender systems are intelligent systems in Machine Learning that can make difference from other algorithms. This article considers application of Machine Learning Technology and we present an approach based a recommender system. We used k-Nearest Neighbors classification algorithm of deep learning technique to classify users based book recommender system. We analyze the traditional collaborative filtering with our methodology and also to compare with them. Our outcomes display the projected algorithm is more precise over the existing algorithm, it also consumes less time and reliable than the existing methods.   


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Yonghong Yu ◽  
Li Zhang ◽  
Can Wang ◽  
Rong Gao ◽  
Weibin Zhao ◽  
...  

Recommender systems have become indispensable for online services since they alleviate the information overload problem for users. Some work has been proposed to support the personalized recommendation by utilizing collaborative filtering to learn the latent user and item representations from implicit interactions between users and items. However, most of existing methods simplify the implicit frequency feedback to binary values, which make collaborative filtering unable to accurately learn the latent user and item features. Moreover, the traditional collaborating filtering methods generally use the linear functions to model the interactions between latent features. The expressiveness of linear functions may not be sufficient to capture the complex structure of users’ interactions and degrades the performance of those recommender systems. In this paper, we propose a neural personalized ranking model for collaborative filtering with the implicit frequency feedback. The proposed method integrates the ranking-based poisson factor model into the neural networks. Specifically, we firstly develop a ranking-based poisson factor model, which combines the poisson factor model and the Bayesian personalized ranking. This model adopts a pair-wise learning method to learn the rankings of uses’ preferences between items. After that, we propose a neural personalized ranking model on top of the ranking-based poisson factor model, named NRPFM, to capture the complex structure of user-item interactions. NRPFM applies the ranking-based poisson factor model on neural networks, which endows the linear ranking-based poisson factor model with a high level of nonlinearities. Experimental results on two real-world datasets show that our proposed method compares favorably with the state-of-the-art recommendation algorithms.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 214
Author(s):  
Lei Chen ◽  
Yuyu Yuan ◽  
Jincui Yang ◽  
Ahmed Zahir

Despite years of evolution of recommender systems, improving prediction accuracy remains one of the core problems among researchers and industry. It is common to use side information to bolster the accuracy of recommender systems. In this work, we focus on using item categories, specifically movie genres, to improve the prediction accuracy as well as coverage, precision, and recall. We derive the user’s taste for an item using the ratings expressed. Similarly, using the collective ratings given to an item, we identify how much each item belongs to a certain genre. These two vectors are then combined to get a user-item-weight matrix. In contrast to the similarity-based weight matrix in memory-based collaborative filtering, we use user-item-weight to make predictions. The user-item-weights can be used to explain to users why certain items have been recommended. We evaluate our proposed method using three real-world datasets. The proposed model performs significantly better than the baseline methods. In addition, we use the user-item-weight matrix to alleviate the sparsity problem associated with correlation-based similarity. In addition to that, the proposed model has a better computational complexity for making predictions than the k-nearest neighbor (kNN) method.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3850
Author(s):  
Bastien Vincke ◽  
Sergio Rodriguez Rodriguez Florez ◽  
Pascal Aubert

Emerging technologies in the context of Autonomous Vehicles (AV) have drastically evolved the industry’s qualification requirements. AVs incorporate complex perception and control systems. Teaching the associated skills that are necessary for the analysis of such systems becomes a very difficult process and existing solutions do not facilitate learning. In this study, our efforts are devoted to proposingan open-source scale model vehicle platform that is designed for teaching the fundamental concepts of autonomous vehicles technologies that are adapted to undergraduate and technical students. The proposed platform is as realistic as possible in order to present and address all of the fundamental concepts that are associated with AV. It includes all on-board components of a stand-alone system, including low and high level functions. Such functionalities are detailed and a proof of concept prototype is presented. A set of experiments is carried out, and the results obtained using this prototype validate the usability of the model for the analysis of time- and energy-constrained systems, as well as distributed embedded perception systems.


2021 ◽  
Vol 15 (6) ◽  
pp. 1-20
Author(s):  
Dongsheng Li ◽  
Haodong Liu ◽  
Chao Chen ◽  
Yingying Zhao ◽  
Stephen M. Chu ◽  
...  

In collaborative filtering (CF) algorithms, the optimal models are usually learned by globally minimizing the empirical risks averaged over all the observed data. However, the global models are often obtained via a performance tradeoff among users/items, i.e., not all users/items are perfectly fitted by the global models due to the hard non-convex optimization problems in CF algorithms. Ensemble learning can address this issue by learning multiple diverse models but usually suffer from efficiency issue on large datasets or complex algorithms. In this article, we keep the intermediate models obtained during global model learning as the snapshot models, and then adaptively combine the snapshot models for individual user-item pairs using a memory network-based method. Empirical studies on three real-world datasets show that the proposed method can extensively and significantly improve the accuracy (up to 15.9% relatively) when applied to a variety of existing collaborative filtering methods.


Sign in / Sign up

Export Citation Format

Share Document