scholarly journals Transmission Grid Expansion Planning of a High Proportion Renewable Energy Power System Based on Flexibility and Economy

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 966
Author(s):  
Zhanpeng Chen ◽  
Yan Hu ◽  
Nengling Tai ◽  
Xiangying Tang ◽  
Guangzeng You

The large-scale grid connection of renewable energy causes great uncertainty in power system planning and operation. The power system flexibility index can quantify the system’s ability to adjust to uncertain events such as renewable energy, load fluctuations, and faults. Compared with traditional planning methods, the flexibility planning method can accurately evaluate the impact of various uncertain events on the system during the planning process, thus effectively ensuring the safe and economic operation of renewable energy systems. First, from the perspective of power transmission and safe operation, the flexibility index of the transmission line is defined. On this basis, considering the system’s economic operation strategy, aiming at the optimization of flexibility, investment cost, operation cost, and renewable energy consumption, a multi-objective transmission grid planning model based on flexibility and economy is proposed. The NSGAII optimization algorithm is used to solve the model. Finally, the simulation is performed in the modified Garver-6 and IEEE RTS-24 node systems to analyze the effectiveness of the proposed model. The results show that the planning model can meet the needs of flexibility and economy, improve the transmission capacity of power grids, reduce the probability of renewable energy abandonment or exceeding power flow, as well as enhance the flexibility, economy, and reliability of power systems.

2020 ◽  
Vol 12 (23) ◽  
pp. 9844
Author(s):  
Maximilian Borning ◽  
Larissa Doré ◽  
Michael Wolff ◽  
Julian Walter ◽  
Tristan Becker ◽  
...  

To mitigate global warming, the European Union aims at climate neutrality by 2050. In order to reach this, the transportation sector has to contribute especially, which accounts for about a quarter of the European greenhouse gas emissions. Herein, electricity-based fuels are a promising approach for reducing emissions. However, a large-scale deployment of electricity-based fuels has a significant impact on the power system due to high electricity demand and the requirement to use renewable energy sources in order to be sustainable. At the same time, this fuel production could offer additional flexibility for the power system. This article investigates the opportunities and challenges of electricity-based fuels and flexible electricity-based fuel production for the European power system. In a literature analysis, the pivotal role of electricity-based fuels for climate neutrality is confirmed. To analyze the impact of flexible fuel production, European power market simulations for the year 2035 are conducted. Results indicate that flexibilization leads to an increased integration of electricity based on renewable energy sources as well as reductions in both carbon dioxide emissions and total operational costs of the power system. However, very high flexibility levels also benefit high-emission power plants and may even lead to increased emissions.


2021 ◽  
Vol 2095 (1) ◽  
pp. 012012
Author(s):  
Yingying Deng ◽  
Haiyan Wang ◽  
Xu’na Liu ◽  
Bo Chen ◽  
Xinting Yang ◽  
...  

Abstract With the large-scale renewable energy access to the power grid, the construction and operation state of the power system have been greatly changed. Therefore, the adaptability of power system to deal with the fluctuation and uncertainty of renewable energy is of great significance to ensure the safe and stable operation of the system and promote the consumption of renewable energy. Based on the structural characteristics and operation status of the power system with high proportion of renewable energy, the adaptability index of the system construction and generators capacity is proposed, which takes into account the security, validity, stability and supply-demand balance of the power system, and comprehensively evaluates the acceptance capacity of the system to the renewable energy. On this basis, a multi-objective power system planning model based on grid-source coordination considering both economy and adaptability is established. The optimal scheme is obtained through the comprehensive decision of the optimal scheme set by the nonlinear improved principal component analysis. Finally, the effectiveness of the adaptability index and the planning model is verified by an example simulation with the improved Gaver-18 system.


2019 ◽  
Vol 9 (3) ◽  
pp. 561 ◽  
Author(s):  
Chang-Gi Min

This study investigates the impact of variability and uncertainty on the flexibility of a power system. The variability and uncertainty make it harder to maintain the balance between load and generation. However, most existing studies on flexibility evaluation have not distinguished between the effects of variability and uncertainty. The countermeasures to address variability and uncertainty differ; thus, applying strategies individually tailored to variability and uncertainty is helpful for more efficient operation and planning of a power system. The first contribution of this study is in separating the variability and uncertainty, and determining which is more influential in terms of flexibility in specific system situations. A flexibility index, named the ramping capability shortage probability (RSP), is used to quantify the extent to which the variability and uncertainty affect the flexibility. The second contribution is to generate various scenarios for variability and uncertainty based on a modified IEEE-RTS-96, to evaluate the flexibility. The penetration level of renewable energy resources is kept the same in each scenario. The results of a sensitivity analysis show that variability is more effective than uncertainty for high and medium net loads.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2363
Author(s):  
Mihaela Simionescu ◽  
Carmen Beatrice Păuna ◽  
Mihaela-Daniela Vornicescu Niculescu

Considering the necessity of achieving economic development by keeping the quality of the environment, the aim of this paper is to study the impact of economic growth on GHG emissions in a sample of Central and Eastern European (CEE) countries (V4 countries, Bulgaria and Romania) in the period of 1996–2019. In the context of dynamic ARDL panel and environmental Kuznets curve (EKC), the relationship between GHG and GDP is N-shaped. A U-shaped relationship was obtained in the renewable Kuznets curve (RKC). Energy consumption, domestic credit to the private sector, and labor productivity contribute to pollution, while renewable energy consumption reduces the GHG emissions. However, more efforts are required for promoting renewable energy in the analyzed countries.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 130
Author(s):  
Mihail Busu ◽  
Alexandra Catalina Nedelcu

In the past decades, carbon dioxide (CO2) emissions have become an important issue for many researchers and policy makers. The focus of scientists and experts in the area is mainly on lowering the CO2 emission levels. In this article, panel data is analyzed with an econometric model, to estimate the impact of renewable energy, biofuels, bioenergy efficiency, population, and urbanization level on CO2 emissions in European Union (EU) countries. Our results underline the fact that urbanization level has a negative impact on increasing CO2 emissions, while biofuels, bioenergy production, and renewable energy consumption have positive and direct impacts on reducing CO2 emissions. Moreover, population growth and urbanization level are negatively correlated with CO2 emission levels. The authors’ findings suggest that the public policies at the national level must encourage the consumption of renewable energy and biofuels in the EU, while population and urbanization level should come along with more restrictions on CO2 emissions.


2019 ◽  
Vol 11 (16) ◽  
pp. 4424 ◽  
Author(s):  
Chunning Na ◽  
Huan Pan ◽  
Yuhong Zhu ◽  
Jiahai Yuan ◽  
Lixia Ding ◽  
...  

At present time, China’s power systems face significant challenges in integrating large-scale renewable energy and reducing the curtailed renewable energy. In order to avoid the curtailment of renewable energy, the power systems need significant flexibility requirements in China. In regions where coal is still heavily relied upon for generating electricity, the flexible operations of coal power units will be the most feasible option to face these challenges. The study first focused on the reasons why the flexible operation of existing coal power units would potentially promote the integration of renewable energy in China and then reviewed the impacts on the performance levels of the units. A simple flexibility operation model was constructed to estimate the integration potential with the existing coal power units under several different scenarios. This study’s simulation results revealed that the existing retrofitted coal power units could provide flexibility in the promotion of the integration of renewable energy in a certain extent. However, the integration potential increment of 20% of the rated power for the coal power units was found to be lower than that of 30% of the rated power. Therefore, by considering the performance impacts of the coal power units with low performances in load operations, it was considered to not be economical for those units to operate at lower than 30% of the rated power. It was believed that once the capacity share of the renewable energy had achieved a continuously growing trend, the existing coal power units would fail to meet the flexibility requirements. Therefore, it was recommended in this study that other flexible resources should be deployed in the power systems for the purpose of reducing the curtailment of renewable energy. Furthermore, based on this study’s obtained evidence, in order to realize a power system with high proportions of renewable energy, China should strive to establish a power system with adequate flexible resources in the future.


Sign in / Sign up

Export Citation Format

Share Document