scholarly journals Reconfigurable Hybrid Resonant Topology for Constant Current/Voltage Wireless Power Transfer of Electric Vehicles

Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1323
Author(s):  
Sang-Hoon Hwang ◽  
Yafei Chen ◽  
Hailong Zhang ◽  
Kang-Yoon Lee ◽  
Dong-Hee Kim

This paper proposes a reconfigurable hybrid topology (RHT) for the constant current (CC)/constant voltage (CV) charging of electric vehicles. The proposed system combines the series–series and the inductor and double capacitors-series topologies. Two AC switches (ACSs) are utilized to change the CC and CV charging modes, without requiring an additional resonant network. A detailed analysis for designing the hybrid topology parameters is also presented; a three-kilowatt prototype was configured based on this analysis in order to validate the proposed system. The constructed prototype confirmed the stable mode changes, load fluctuations, CC/CV output characteristics and efficiency of the proposed system. The maximum efficiency of the proposed RHT was found to be 92.58%.

2021 ◽  
Vol 11 (16) ◽  
pp. 7569
Author(s):  
Guangyao Li ◽  
Dong-Hee Kim

Compared with plugged-in chargers, wireless power transfer (WPT) systems for battery chargers have numerous advantages, e.g., safety, efficiency, and convenience. To satisfy the important wireless charging requirements of efficiency and safety of the battery, this paper proposes a constant current/voltage (CC/CV) charging compensation topology with near-communication based on receiving-side hybrid topology switching, which is unaffected by the dynamic loads. The proposed hybrid topology is systematically analyzed by using the M-mode, and the system parameters are designed to satisfy the constraints of zero phase angle (ZPA) and the specified CC output. In the CV mode, one shunt capacitor is employed to the compensation topology for the CV output and ZPA realization. Both the CC and CV modes are operated under the conditions of zero voltage switching (ZVS) for reducing the loss of the WPT systems. The proposed hybrid compensation topology is controlled by the receiving side and does not require real-time communication to avoid sophisticated control logic. Finally, a 1.1-kW experimental prototype charger based on DS-LCC and LCC-S topologies was established to verify the charging performance of the proposed WPT systems. The maximum efficiency of the proposed WPT charger was found to be approximately 91%. The experimental results were consistent with those of the theoretical analysis.


2021 ◽  
Vol 13 (1) ◽  
pp. 13
Author(s):  
Quanlei Zhang ◽  
Chunfang Wang ◽  
Lingyun Yang ◽  
Zhihao Guo

With the development of wireless power transfer (WPT), the wireless charging has become a research hotspot. This paper proposes a novel single-switch hybrid compensation topology, which can change the compensation network to realize the constant-current (CC) and constant-voltage (CV) output. The zero voltage switching (ZVS) margin can be designed to increase the stability of the system. In addition, the magnetic coupler adopts a composite shielding structure composed of ferrite, nanocrystalline, and aluminium foil. The composite shielding structure has a better shielding effect on magnetic flux leakage, and its weight is lighter. The composite shielding structure is expected to be used in the wireless charging system of electric vehicles (EVs). Finally, an experimental prototype is built to verify the theoretical analysis, and the maximum efficiency can reach 91.4%.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1453
Author(s):  
Masood Rehman ◽  
Perumal Nallagownden ◽  
Zuhairi Baharudin

The usage of the Wireless Power Transfer (WPT) technique for charging lithium-ion (Li-ion) batteries of electric vehicles (EVs) is increasing rapidly. The Li-ion battery requires constant current (CC) followed by constant-voltage (CV) supply for efficient battery charging and to enhance its lifespan. However, it is hard to obtain CC and CV outputs due to the variation of battery resistance during charging. Moreover, a zero-phase angle (ZPA) of the input source is essential to improve the power transfer capability. Therefore, this paper proposes a new hybrid compensation topology to achieve load-independent CC and CV behavior of the WPT system along with ZPA. Two symmetrical coils have been used in the proposed WPT system as transmitter (Tx) and receiver (Rx) coils. A comprehensive mathematical analysis for achieving CC and CV characteristics as well as for power losses is carried out. A new hybrid compensation is designed by combining Series–Series (SS) and Inductor–Capacitor–Capacitor/Series (LCC-S) compensation topologies along with two additional switches. The proposed compensation works on single resonance frequency, and it is simple, reliable, and easy to implement with only one compensation capacitor from the Rx side. Simulations are performed, and a prototype is fabricated to verify the mathematical analysis and simulation results. The overall result shows that the mathematical analysis and simulations comply with the experimental results. Full load efficiencies of 90.33% and 88.91% are achieved in the CC and CV modes, respectively.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7594
Author(s):  
Zhao-Wei Gong ◽  
Jin-Gang Li ◽  
Xiang-Qian Tong

This paper presents a series hybrid wireless charging system with an active adjustable circuitry offering constant current and constant voltage output characteristics. The series hybrid system consists of the inductor–capacitor–capacitor (LCC) and series-series (SS) networks are used for improving charging pad misalignment tolerance. An active switch is employed to provide an adjustable CC and CV output for different battery charging stages. To demonstrate the performance of the proposed method, a 310 W prototype was built. A systematic optimization in the parameter of the proposed topology to achieve relative constant output was analyzed within a certain range of the designed operating region. The experimental results indicate that the output current fluctuation is less than 5% with load variations, and the output voltage fluctuation is less than 5% with load varying from 19 to 70 Ω, as the pick-up pads misaligned within 50% of the pad outer diameter.


Sign in / Sign up

Export Citation Format

Share Document