scholarly journals Wideband Band-Pass Filter Design Using Coupled Line Cross-Shaped Resonator

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2173
Author(s):  
Dong-Sheng La ◽  
Xin Guan ◽  
Shuai-Ming Chen ◽  
Yu-Ying Li ◽  
Jing-Wei Guo

In this paper, a wideband bandpass filter with a coupled line cross-shaped resonator (CLCSR) is proposed. The proposed bandpass filter is composed of two open-end parallel coupled lines, one short-end parallel coupled line, one branch microstrip line, and the parallel coupled line feed structure. With the use of the even and odd mode approach, the transmission zeros and transmission poles of the proposed bandpass filter are analyzed. The coupling coefficient of the parallel coupled line feed structure is big, so the distance between the parallel coupled line is too small to be processed. A three microstirp lines coupled structure is used to realize strong coupling and cross coupling. This structure also can reduce the return loss in passband and increase the out-of-band rejection. The transmission zeros can be adjusted easily by varying the lengths of the open-end parallel coupled line or the short-end parallel coupled line. The proposed bandpass filter is fabricated and measured. The simulated results agree well with the measured ones, which shows that the design method is valid.

2015 ◽  
Vol 77 (12) ◽  
Author(s):  
Kabir Ibrahim Jahun ◽  
Hussein Mohamed Hagi Hassan Abdirahman Mohamud Shire ◽  
Ali Orozi Sougui ◽  
S. H. Dahlan

Compact microstrip band-pass filter design using parallel coupled lines is presented in this paper. The microstrip lines are calculated and constructed using CST studio with two input and output ports of the filter structure are printed over Defected Ground Structure (DGS).The proposed symmetrical structure offers a simple and compact design while exhibiting an improved stop-band characteristics in comparison to conventional coupled microstrip line filter structure. The simulation and measurements of 2GHz prototype band pass filter are presented. The measured result agrees well with the simulation data. Compared with conventional parallel coupled line band pass filter, the second, third and fourth spurious responses are suppressed; in addition, the size of the prototype filter circuit is reduced up to 20.8%.  


Author(s):  
Qazwan Abdullah Tarbosh ◽  
Nor Shahida Mohd Shah ◽  
Bishwajeet Pandey ◽  
Adeeb Salh ◽  
Nabil Farah ◽  
...  

Recently, a multilayer structure is very imperative to minimize the size of planar microstrip filters. In the flexible design and incorporation of other microwave components, a multilayer band-pass filter provides another dimension. This paper, therefore, introduces a band-pass filter of 2.52-2.65 GHz for digital broadcast applications using parallel-coupled line (PCL) and multilayer(ML) hairpin resonator. The targeted four-pole resonator has a center frequency of 2.58 GHz with a bandwidth of 130 MHz. The hairpin-line offers compact filter design structures. The proposed configuration of the parallel-coupled line (PCL) resonator is used to design the ML band-pass filter. The FR4 substrate with a dielectric constant (εr) of 4.3 and 1.6 mm thickness was used. Comparison analysis between the simulated insertion loss and the reflection coefficient of substrates RO3003 and FR4 was performed to verify the efficiency of the proposed filter design. Simulation of PCL filter is accomplished using computer simulation technology (CST)and an advanced design system(ADS). The PCL bandpass filter was experimentally validated and good agreement between simulation and measured results were achieved showing a well-measured reflection coefficient. The simulated results of the ML bandpass filter show that the circuit performs well, and the filter size is significantly reduced.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Dong-Sheng La ◽  
Xin Guan ◽  
Hong-Cheng Li ◽  
Yu-Ying Li ◽  
Jing-Wei Guo

This paper presents a broadband band-pass filter with cross-coupled line structure. The cross-coupled line structure is composed of the parallel coupled lines and an open stub. It can be analyzed by the odd- and even-mode method due to its symmetric structure. There are three transmission poles in the passband and two transmission zeros out of passband. Then, the influence of the impedance parameters on the transmission zeros and transmission poles are analyzed. Then, the physical parameters of the proposed band-pass filter are given. And using HFSS for simulation and optimization, the final insertion loss and return loss of filter are obtained. The simulation and measurement results are in good agreement, which validates the design idea.


Frequenz ◽  
2018 ◽  
Vol 72 (9-10) ◽  
pp. 455-458 ◽  
Author(s):  
Vivek Singh ◽  
Vinay Kumar Killamsetty ◽  
Biswajeet Mukherjee

Abstract In this letter, a miniaturized Band Pass Filter (BPF) with wide stopband centered at 0.350 GHz for TETRA band applications is proposed using a Spiral Short Circuit quarter wavelength Stepped Impedance Resonator (SSC-SIR) and a stub loaded on feed line for enhancement of rejection level in the stopband. Spiral configuration of the resonator is used for the miniaturization of BPF. The proposed BPF provides a 3dB fractional bandwidth of 13.7 % with two transmission zeros in the lower and upper stopband to provide good selectivity and four transmission zeros which provide wide stopband upto 6.86f0. Proposed BPF has a very compact size of 0.064λg×0.062λg.


Author(s):  
Sanae Azizi ◽  
Mustapha El Halaoui ◽  
Abdelmoumen Kaabal ◽  
Saida Ahyoud ◽  
Adel Asselman

<p>In this paper, the bandwidth enhancement of bandpass filter (BPF) is proposed by utilizing defected microstrip structure (DMS). The initial micro strip BPF which is designed to have the bandwidth 1GHz with the center frequency of 3.5GHz is deployed on FR4 Epoxy dielectric substrate with overall size and thickness of 14mm x 24mm and 1.6mm, respectively. The proposed filter consists of two parallel coupled lines centred by ring-shaped, to enhance the bandwidth response, an attempt is carried out by applying DMS on the ligne center with a ring-shaped of initial filter. Here, the proposed DMS is constructed of the arrowhead dumbbell. Some parametrical studies to the DMS such as changing to obtain the optimum geometry of DMS with the desired bandwidth response. From the characterization result, it shows that the utilization of DMS on to the microstrip ligne of filter has widened 3dB bandwidth response up to 1.8GHz ranges from 2.55GHz to 4.35GHz yielding an enhanced wideband response for various wideband wireless applications.</p>


2014 ◽  
Vol 631-632 ◽  
pp. 327-332
Author(s):  
Sheng Qian Ma ◽  
Chang Rong Zhao ◽  
Yan Ping Ji

Varactor to replace commonly variable capacitance is applied to the tuner. This paper presents the voltage-controllable band-pass filter design method. The filter constitutes of operational amplifier, resistors, varactor MV209 and parallel LC resonant circuit. Center frequency range of the band-pass filters is from 19MHz to 25MHz controlled with DC voltage. It derives the transfer function of the filter and function expression of junction capacitance with reverse voltage. The frequency response of filter simulation and experimental results are given. Key words: Varactor; Band-Pass Filter; Voltage-Controllable Filter; Junction Capacitance


Frequenz ◽  
2017 ◽  
Vol 71 (7-8) ◽  
Author(s):  
Lei Chen ◽  
Xiao Yan Li ◽  
Feng Wei

AbstractA compact quad-band band-pass filter (BPF) based on stub loaded resonators (SLRs) with defected microstrip structure (DMS) is analyzed and designed in this paper. The proposed resonator is created by embedding DMS into the SLR and can achieve four narrow passbands. By employing the pseudointerdigital coupling structure between the two resonators, transmission zeros among each passband are generated to improve the passband selectivity and a high isolation is achieved. In order to validate its practicability, a prototype of a quad-band BPF centred at 1.57, 2.5, 4.3 and 5.2 GHz is designed and fabricated. The proposed filter is more compact due to the slow-wave characteristic of DMS. The simulated and measured results are in good agreement with each other. In addition, the DMS idea can be extended to the design of other microstrip passive devices.


2021 ◽  
Vol 10 (1) ◽  
pp. 101-110
Author(s):  
Budi Prasetya ◽  
Yuyun Siti Rohmah ◽  
Dwi Andi Nurmantris ◽  
Sarah Mulyawati ◽  
Reza Dipayana

The selection of the right filter design method is a very important first step for a radio frequency engineer. This paper presents the comparison of two methods of band pass filter design using hairpin-line and square open-loop resonator. Both methods were applied to obtain filter designs that can work for broadcasting system in digital television community. Band pass filter was simulated using design software and fabricated using epoxy FR-4 substrate. The results of simulation and measurement shown return loss value at 27.3 dB for hairpin line band pass filter and 25.901 for square open-loop resonator band pass filter. Voltage standing wave ratio parameter values were 1.09 and 1.1067 for hairpin line and square open-loop band pass filter respectively. The insertion loss values for the Hairpin line band pass filter and square open-loop band pass filter were 0.9692 and near 0 dB, respectively. Fractional bandwidth, for hairpin line band pass filter, was 6.7% while for square open-loop band pass filter was 4.8%. Regarding the size, the dimension of square open-loop resonator was approximately five times larger than hairpin-line band pass filter. Based on the advantages of the hairpin line method, we recommend that researchers choose the filter for digital TV broadcasting.


2017 ◽  
Vol 6 (2) ◽  
pp. 123
Author(s):  
Mudrik Alaydrus

Riset bandpass filter telah mengalami perjalanan panjang, seiring dengan perkembangan teknologi wireless dan aplikasi sensor serta radar. Sampai dengan pertengahan 2015 ditemukan sangat banyak riset tentang bandpass filter di pelbagai publikasi yang ada. Dasar perancangan bandpass filter didominasi dengan metoda insertion loss yang menggunakan aproksimasi Butterworth, Chebyshev dan Elliptis. Realisasi dari elemen yang muncul dari aproksimasi di atas diimplementasikan dalam bentuk penggandengan beberapa resonator. Resonator yang tergandeng ujung (end-coupled) dan tergandeng parallel (parallel-coupled) memberikan realisasi fisik dari penggandengan langsung, sedangkan untuk penggandengan silang digunakan open-loop resonator. Modifikasi filter dengan open-loop resonator digunakan untuk merancang dual bandpass filter dengan mengorbankan hilangnya transmission zeros.


Frequenz ◽  
2021 ◽  
Vol 75 (5-6) ◽  
pp. 147-152
Author(s):  
Zahid A. Bhat ◽  
Javaid A. Sheikh ◽  
Sharief D. Khan ◽  
Raqeebur Rehman ◽  
Shazia Ashraf

Abstract This paper presents a compact and the low-cost coupled line band-pass filter with application to future generation millimetre-waves and 5G communications. The proposed approach of the filter design is based on the coupled-line and centre tapped upper and lower stepped impedance resonators. These resonators generate the sharp rejection, wide bandwidth, and abet to realize the compact filter. A detailed theoretical as well as the numerical analysis of the filter has also been investigated. As a demonstration, the proposed band-pass filter configuration has been designed and fabricated at the 33.5 GHz frequency using a low-cost PCB technique. It has observed that the proposed filter, results in a better return loss and the low insertion loss. The experimental results has been presented and compared with the simulated results and has found quite satisfactory. Moreover the results obtained validate a good agreement with each other.


Sign in / Sign up

Export Citation Format

Share Document