scholarly journals One-Dimensional Simulation of Synergistic Desulfurization and Denitrification Processes for Electrostatic Precipitators Based on a Fluid-Chemical Reaction Hybrid Model

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3249 ◽  
Author(s):  
Chao Zhang ◽  
Lixin Yang

Non-thermal plasma (NTP) technologies can be used to treat a variety of gaseous pollutants, and extensive research has been carried out worldwide because of its high purification efficiency, low dependence on temperature, and other advantages. NO and SO2 are the main gaseous pollutants in coal-fired flue gas. The plasma dynamics for desulfurization and denitrification is a hot topic in the field of NTP pollutant control technologies. In this paper, a one-dimensional fluid model for the simultaneous desulfurization and denitrification of flue gas by negative direct current (DC) corona discharge was established based on the traditional zero-dimensional chemical kinetic model. The simplified wire-cylindrical electrodes configuration and numerical simulation conditions are similar to the working process of electrostatic precipitators. The results obtained by the finite element method show that the removal efficiency of NO and SO2 is remarkable in the region with a radius of less than one centimeter around the high-voltage electrode, and the effective purification area expands with the increase of the discharge voltage. There are different removal pathways for NO at different positions in the removal region, while the removal of SO2 is mainly dependent on the oxidation by OH.

2019 ◽  
Vol 35 (8) ◽  
pp. 879-915 ◽  
Author(s):  
Bona Lu ◽  
Yan Niu ◽  
Feiguo Chen ◽  
Nouman Ahmad ◽  
Wei Wang ◽  
...  

Abstract Gas-solid fluidization is intrinsically dynamic and manifests mesoscale structures spanning a wide range of length and timescales. When involved with reactions, more complex phenomena emerge and thus pose bigger challenges for modeling. As the mesoscale is critical to understand multiphase reactive flows, which the conventional two-fluid model without mesoscale modeling may be inadequate to resolve even using extremely fine grids, this review attempts to demonstrate that the energy-minimization multiscale (EMMS) model could be a starting point to develop such mesoscale modeling. Then, the EMMS-based mesoscale modeling with emphasis on formulation of drag coefficients for different fluidization regimes, modification of mass transfer coefficient, and other extensions are discussed in an attempt to resolve the emerging challenges. Its applications with examples of development of novel fluid catalytic cracking and methanol-to-olefins processes prove that the mesoscale modeling plays a remarkable role in improving the predictions in hydrodynamic behaviors and overall reaction rate. However, the product content primarily depends on the chemical kinetic model itself, suggesting the necessity of an effective coupling between chemical kinetics and flow characteristics. The mesoscale modeling can be believed to accelerate the traditional experimental-based scale-up process with much lower cost in the future.


1987 ◽  
Vol 122 ◽  
pp. 551-552
Author(s):  
L.A.M. Nejad ◽  
T. J. Millar

We have developed a time-dependent chemical kinetic model to describe the chemistry in the circumstellar envelopes of cool stars, with particular reference to IRC + 10216. Our detailed calculations show that ion-molecule reactions are important in the formation of many of the species observed in IRC + 10216.


2014 ◽  
Vol 694 ◽  
pp. 54-58
Author(s):  
Ling Zhe Zhang ◽  
Ya Kun Sun ◽  
Su Li ◽  
Qing Ping Zheng

A reduced chemical kinetic model (103species and 468 reactions) for new low-RON(research octane number) gasoline surrogate fuels has been proposed. Simulations explored for ignition delay time have been compared with experimental data in shock tubes at pressure of 10atm-55 atm and temperatue of 600-1400 K (fuel/air equivalence ratio=0.5,1.0,2.0 and EGR rate=0, 20%). The simulation data presented 15% enlargement compared with experiments showed applicability of the new kinetic mode in this work. A combustion simulation model has been build for HCCI(homogeneous charge compression ignition) engine with Chemkin-pro. The effects of different air inlet temperature, inlet pressure, engine speed and the fuel air equivalence ratio on the combustion characteristics of the fuel were researched. The results indicated the combustion in an HCCI engine worked sufficiently with lean mixtures and low speed. Meanwhile the material strength could be influenced when the inlet conditions changed. This helps to promote the low-RON gasoline surrogate fuel application in the HCCI engine.


Author(s):  
David Heinze ◽  
Thomas Schulenberg ◽  
Lars Behnke

A simulation model for the direct contact condensation of steam in subcooled water is presented that allows determination of major parameters of the process, such as the jet penetration length. Entrainment of water by the steam jet is modeled based on the Kelvin–Helmholtz and Rayleigh–Taylor instability theories. Primary atomization due to acceleration of interfacial waves and secondary atomization due to aerodynamic forces account for the initial size of entrained droplets. The resulting steam-water two-phase flow is simulated based on a one-dimensional two-fluid model. An interfacial area transport equation is used to track changes of the interfacial area density due to droplet entrainment and steam condensation. Interfacial heat and mass transfer rates during condensation are calculated using the two-resistance model. The resulting two-phase flow equations constitute a system of ordinary differential equations, which is solved by means of the explicit Runge–Kutta–Fehlberg algorithm. The simulation results are in good qualitative agreement with published experimental data over a wide range of pool temperatures and mass flow rates.


2011 ◽  
Vol 78 (6) ◽  
Author(s):  
Richard V. Beblo ◽  
Lisa Mauck Weiland

Presented are the experimental results of two light activated shape memory polymer (LASMP) formulations. The optical stimulus used to activate the materials is detailed including a mapping of the spatial optical intensity at the surface of the sample. From this, results of energy calculations are presented including the amount of energy available for transitioning from the glassy state to the rubbery state and from the rubbery state to the glassy state, highlighting one of the major advantages of LASMP as requiring less energy to transition than thermally activated shape memory polymers. The mechano-optical experimental setup and procedure is detailed and provides a consistent method for evaluating this relatively new class of shape memory polymer. A chemical kinetic model is used to predict both the theoretical glassy state modulus, as only the sample averaged modulus is experimentally attainable, as well as the through thickness distribution of Young’s modulus. The experimental and model results for these second generation LASMP formulations are then compared with earlier LASMP generations (detailed previously in Beblo and Mauck Weiland, 2009, “Light Activated Shape Memory Polymer Characterization,” ASME J. Appl. Mech., 76, pp. 8) and typical thermally activated shape memory polymer.


Sign in / Sign up

Export Citation Format

Share Document