scholarly journals Life Cycle Cost of Heat Supply to Areas with Detached Houses—A Comparison of District Heating and Heat Pumps from an Energy System Perspective

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3266 ◽  
Author(s):  
Moa Swing Gustafsson ◽  
Jonn Myhren ◽  
Erik Dotzauer

There are different views on whether district heating (DH) or heat pumps (HPs) is or are the best heating solution in order to reach a 100% renewable energy system. This article investigates the economic perspective, by calculating and comparing the energy system life cycle cost (LCC) for the two solutions in areas with detached houses. The LCC is calculated using Monte Carlo simulation, where all input data is varied according to predefined probability distributions. In addition to the parameter variations, 16 different scenarios are evaluated regarding the main fuel for the DH, the percentage of combined heat and power (CHP), the DH temperature level, and the type of electrical backup power. Although HP is the case with the lowest LCC for most of the scenarios, there are alternatives for each scenario in which either HP or DH has the lowest LCC. In alternative scenarios with additional electricity transmission costs, and a marginal cost perspective regarding the CHP investment, DH has the lowest LCC overall, taking into account all scenarios. The study concludes that the decision based on energy system economy on whether DH should expand into areas with detached houses must take local conditions into consideration.

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2719 ◽  
Author(s):  
Moa Swing Gustafsson ◽  
Jonn Are Myhren ◽  
Erik Dotzauer ◽  
Marcus Gustafsson

A common way of calculating the life cycle cost (LCC) of building renovation measures is to approach it from the building side, where the energy system is considered by calculating the savings in the form of less bought energy. In this study a wider perspective is introduced. The LCC for three different energy renovation measures, mechanical ventilation with heat recovery and two different heat pump systems, are compared to a reference case, a building connected to the district heating system. The energy system supplying the building is assumed to be 100% renewable, where eight different future scenarios are considered. The LCC is calculated as the total cost for the renovation measures and the energy systems. All renovation measures result in a lower district heating demand, at the expense of an increased electricity demand. All renovation measures also result in an increased LCC, compared to the reference building. When aiming for a transformation towards a 100% renewable system in the future, this study shows the importance of having a system perspective, and also taking possible future production scenarios into consideration when evaluating building renovation measures that are carried out today, but will last for several years, in which the energy production system, hopefully, will change.


Resources ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 52
Author(s):  
Annette Steingrube ◽  
Keyu Bao ◽  
Stefan Wieland ◽  
Andrés Lalama ◽  
Pithon M. Kabiro ◽  
...  

District heating is seen as an important concept to decarbonize heating systems and meet climate mitigation goals. However, the decision related to where central heating is most viable is dependent on many different aspects, like heating densities or current heating structures. An urban energy simulation platform based on 3D building objects can improve the accuracy of energy demand calculation on building level, but lacks a system perspective. Energy system models help to find economically optimal solutions for entire energy systems, including the optimal amount of centrally supplied heat, but do not usually provide information on building level. Coupling both methods through a novel heating grid disaggregation algorithm, we propose a framework that does three things simultaneously: optimize energy systems that can comprise all demand sectors as well as sector coupling, assess the role of centralized heating in such optimized energy systems, and determine the layouts of supplying district heating grids with a spatial resolution on the street level. The algorithm is tested on two case studies; one, an urban city quarter, and the other, a rural town. In the urban city quarter, district heating is economically feasible in all scenarios. Using heat pumps in addition to CHPs increases the optimal amount of centrally supplied heat. In the rural quarter, central heat pumps guarantee the feasibility of district heating, while standalone CHPs are more expensive than decentral heating technologies.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 584
Author(s):  
Chiara Magni ◽  
Sylvain Quoilin ◽  
Alessia Arteconi

Flexibility is crucial to enable the penetration of high shares of renewables in the power system while ensuring the security and affordability of the electricity dispatch. In this regard, heat–electricity sector coupling technologies are considered a promising solution for the integration of flexible devices such as thermal storage units and heat pumps. The deployment of these devices would also enable the decarbonization of the heating sector, responsible for around half of the energy consumption in the EU, of which 75% is currently supplied by fossil fuels. This paper investigates in which measure the diffusion of district heating (DH) coupled with thermal energy storage (TES) units can contribute to the overall system flexibility and to the provision of operating reserves for energy systems with high renewable penetration. The deployment of two different DH supply technologies, namely combined heat and power units (CHP) and large-scale heat pumps (P2HT), is modeled and compared in terms of performance. The case study analyzed is the future Italian energy system, which is simulated through the unit commitment and optimal dispatch model Dispa-SET. Results show that DH coupled with heat pumps and CHP units could enable both costs and emissions related to the heat–electricity sector to be reduced by up to 50%. DH systems also proved to be a promising solution to grant the flexibility and resilience of power systems with high shares of renewables by significantly reducing the curtailment of renewables and cost-optimally providing up to 15% of the total upward reserve requirements.


2016 ◽  
Vol 4 (2) ◽  
pp. 149-155
Author(s):  
Allen Blash ◽  
William Butler ◽  
Lindy Clark ◽  
Kyle Fleming ◽  
LTC Jennifer Kasker

In order to make the best use of the defense spending budget, it is critical that the Department of Defense (DoD) accurately predict the Research, Development, Test and Evaluation (RDT&E), Procurement, and Operation and Support (O&S) costs down to the third level of the Work Breakdown Structure for Major Defense Acquisition Project (MDAP) wheeled or tracked vehicles. This research utilizes historical data, extracted from government databases, to develop cost estimating relationships (CERs) that predict the life cycle cost of wheeled and tracked vehicles based on attributes. This research can also be leveraged for defense acquisition programs across the DoD portfolio. The model will be integrated into a tradespace analysis tool, ERS & CREATE-GV, which was developed by ERDC to predict the cost of each alternative created in the tradespace.


2021 ◽  
pp. 1-4
Author(s):  
Heinz P. Bloch ◽  
Allan R. Budris

2017 ◽  
Vol 5 (2) ◽  
pp. 15 ◽  
Author(s):  
Stanislav Szabo ◽  
Ivan Koblen

<p align="LEFT">The paper in the introductory part underlines some aspects concerning the importance of Aviation Technology Life Cycle Management and informs on basic international standards for the processes and stages of life cycle. The second part is focused on definition and main objectives of system life cycle management. The authors subsequently inform on system life cycle stages (in general) and system life cycle processes according to ISO/IEC/IEEE 15288:2015 standard. Following the fact, that life cycle cost (LCC) is inseparable part and has direct connection to the life cycle management, the paper contains brief information regarding to LCC (cost categories, cost breakdown structure, cost estimation a.o.). Recently was issued the first part of Aviation Technology Life Cycle Management monograph (in Slovak: ”Manažment životného cyklu leteckej techniky I”), written by I.Koblen and S.Szabo. Following this fact and direct relation to the topic of article it is a part of article briefly introduced the content of two parts of this monograph (the 2nd part of monograph it has been prepared for the print). The last part of article is focused on issue concerning main assumptions and conditions for successful application of aviation technology life cycle management in aviation companies, aerospace industry organizations as well as from the relevant stakeholders side.</p>


2019 ◽  
Vol 111 ◽  
pp. 03002 ◽  
Author(s):  
Janne Hirvonen ◽  
Juha Jokisalo ◽  
Juhani Heljo ◽  
Risto Kosonen

This study examined the cost-optimality of energy renovation on Finnish apartment buildings of different ages, built according to different energy performance requirements. Multi-objective optimization was utilized to minimize both CO2 emissions and life cycle cost (LCC). IDA-ICE simulations were performed to obtain the hourly heating demand of the buildings. Four building age classes and three heating systems (district heating, exhaust air heat pump and ground-source heat pump) were separately optimized. With district heating, it was possible to reduce emissions by 11%, while also reducing LCC. With heat pumps cost-savings could be achieved while reducing emissions by over 49%. With maximal (not cost-effective) investments, emissions could be reduced by more than 70% in all examined cases. In all cases, the cheapest solutions included solar electricity and sewage heat recovery. In old buildings, window upgrades and additional roof insulation were cost-effective. In new buildings, demand-based ventilation was included in all optimal solutions.


Sign in / Sign up

Export Citation Format

Share Document