scholarly journals Experimental Investigations of Innovative Biomass Energy Harnessing Solutions

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3469 ◽  
Author(s):  
Gheorghe Lazaroiu ◽  
Lucian Mihaescu ◽  
Gabriel Negreanu ◽  
Constantin Pana ◽  
Ionel Pisa ◽  
...  

Leather processing for commercial purposes involves going through a set of complex and laborious operations, resulting in over 70% waste relative to the initial feedstock; a quarter of this waste is produced in Europe. Worldwide there are about 36,000 companies active in this sector, generating a turnover of almost 48 billion euros. As in any industrial sector, waste recovery is a highly researched topic, with alternatives for its use being constantly considered. One of the most interesting solutions to this problem consists of using part of the waste for power applications. For instance, the 10% fats from total animal waste could well be employed to power diesel engines, both in raw state or as biodiesel. The remainder, which contains mostly proteins, can be exploited to obtain biogas through anaerobic digestion. This paper presents the results of experimental determinations on the combustion of animal fats and compares it to other biofuels, such as vegetable oils and solid biomass. The advantages of co-firing hydrogen-rich gas (HRG) and vegetable biomass are also analyzed. According to the presented results, combustion of the investigated fuels has a lower impact on the environment, with the concentration of pollutants in the flue gases being low. Thus, the paper proves that all the proposed solutions are ecological alternatives for biomass exploitation for energy recovery purposes, based on comparing the results in terms of pollutant emissions. This paper provides qualitative and quantitative perspectives on multiple alternatives of energy recovery from biomass resources, while also briefly describing the methods and equipment used to this end.

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3398
Author(s):  
Mariusz Jerzy Stolarski ◽  
Paweł Dudziec ◽  
Michał Krzyżaniak ◽  
Ewelina Olba-Zięty

Conventional energy sources often do not fully satisfy the needs of a modern economy, especially given the climate changes associated with them. These issues should be addressed by diversification of energy generation, including the development of renewable energy sources (RES). Solid biomass will play a major part in the process in Poland. The function of rural areas, along with a well-developed agricultural and forest economy sector, will be a key aspect in this as these areas are suitable for solid biomass acquisition in various ways. This study aimed to determine the solid biomass energy potential in the commune of Goworowo to illustrate the potential in the smallest administrative units of Poland. This research determined the environmental and natural conditions in the commune, which helped to identify the crucial usable solid biomass resources. The total energy potential of solid biomass resources in the commune of Goworowo amounted to 97,672 GJ y−1. The highest potential was accumulated in straw surplus (37,288 GJ y−1) and the lowest was in wood from roadside maintenance (113 GJ y−1). This study showed that rural areas could soon play a significant role in obtaining solid biomass, and individual communes could become spaces for the diversification of energy feedstock.


2019 ◽  
Vol 112 ◽  
pp. 01014
Author(s):  
Adrian Nicolici ◽  
Constantin Pană ◽  
Niculae Negurescu ◽  
Alexandru Cernat ◽  
Cristian Nuţu

The progressive diminution of the oil reserves all over the world highlights the necessity of using alternative fuels derived from durable renewable resource. The use of the alternative fuels represents a viable solution to reduce the pollutant emissions and to replace fossil fuels. Thus, a viable solution is the use of the animal fats in mixture with the diesel fuel at the diesel engines. A D2156 MTN8 diesel engine was firstly fuelled with diesel fuel and then with different blends of diesel fuel-animal fats (5% and 10% animal fats content). In the paper are presented some results of the experimental investigations of engine fuelled with preheated animal fats. The raw animal fats effects on the combustion process and on the pollutant emissions at different engine loads and 1450 rev/min engine speed are showed. The engine cycle variability increases at the animal fats content increase. The cycle variability for maximum pressure, maximum pressure angle and indicated mean effective pressure is analysed. The cycle variability coefficients values don’t exceed the recommended values of the standard diesel engine.


Author(s):  
Yong Tian ◽  
Wen-Jing Liu ◽  
Qi-jie Jiang ◽  
Xin-Ying Xu

With the development of biomass power generation technology, biomass waste has a more excellent recycling value. The article establishes a biomass waste inventory model based on the material flow analysis method and predicts raw material waste’s energy utilization potential. The results show that the amount of biomass waste generated from 2016 to 2020 is on the rise. In 2020, biomass waste’s energy utilization can reach 107,802,300 tons, equivalent to 1,955.28PJ of energy. Through biomass energy analysis and emission analysis, the results show that the biomass waste can generate 182.02 billion kW⋅h in 2020, which can replace 35.9% of the region’s total power consumption, which is compared with the traditional power generation method under the same power generation capacity. Power generation can reduce SO2 emissions by 250,400 tons, NOx emissions by 399,300 tons, and PM10 emissions by 49,700 tons. Reduce direct economic losses by 712 million yuan. Therefore, Chinese promotion of the recycling of biomass waste and the acceleration of the biomass energy industry’s development is of great significance for reducing pollutant emissions and alleviating energy pressure.


2015 ◽  
Vol 9 (1) ◽  
pp. 55-62
Author(s):  
János Szendrei ◽  
Edit Szűcs ◽  
Gábor Grasselli

The most sustainable energy is the energy not used. Best way to (not) use energy is the proper design of a facility or an energy consuming system. The remaining energy needs have to be covered with energy utilisation of waste materials, renewable energy sources and, until the previous solutions are not sufficient to satisfy the energy demands, the last is the use of conventional fossil and nuclear energy sources. In terms of renewable energy, biomass has an important role today. However, there is a difference between available inputs and utilisation when considering biomass energy possibilities in rural and urban context. This paper suggests biomass energy possibilities that are recommendable in rural context: possibilities of solid biomass combustion, of liquid biofuels and of anaerobe digestion. Also important are possibilities of solid biomass combustion and wet biomass digestion for urban energy production, although with some remarks on system considerations of urban biomass. Most advanced solutions for sustainable management of biomass energy include circular systems, both in rural and urban context, as recommended.


2020 ◽  
Vol 12 (3) ◽  
pp. 1036 ◽  
Author(s):  
Luís Carmo-Calado ◽  
Manuel Jesús Hermoso-Orzáez ◽  
Roberta Mota-Panizio ◽  
Bruno Guilherme-Garcia ◽  
Paulo Brito

The present work studies the possibility of energy recovery by thermal conversion of combustible residual materials, namely tires and rubber-plastic, plastic waste from outdoor luminaires. The waste has great potential for energy recovery (HHV: 38.6 MJ/kg for tires and 31.6 MJ/kg for plastic). Considering the thermal conversion difficulties of these residues, four co-combustion tests with mixtures of tires/plastics + pelletized Miscanthus, and an additional test with 100% Miscanthus were performed. The temperature was increased to the maximum allowed by the equipment, about 500 °C. The water temperature at the boiler outlet and the water flow were controlled (60 °C and 11 L/min). Different mixtures of residues (0–60% tires/plastics) were tested and compared in terms of power and gaseous emissions. Results indicate that energy production increased with the increase of tire residue in the mixture, reaching a maximum of 157 kW for 40% of miscanthus and 60% of tires. However, the automatic feeding difficulties of the boiler also increased, requiring constant operator intervention. As for plastic and rubber waste, fuel consumption generally decreased with increasing percentages of these materials in the blend, with temperatures ranging from 383 °C to 411 °C. Power also decreased by including such wastes (66–100 kW) due to feeding difficulties and cinder-fusing problems related to ash melting. From the study, it can be concluded that co-combustion is a suitable technology for the recovery of waste tires, but operational problems arise with high levels of residues in the mixture. Increasing pollutant emissions and the need for pre-treatments are other limiting factors. In this sense, the thermal gasification process was tested with the same residues and the same percentages of mixtures used in the co-combustion tests. The gasification tests were performed in a downdraft reactor at temperatures above 800 °C. Each test started with 100% acacia chip for reference (like the previous miscanthus), and then with mixtures of 0–60% of tires and blends of plastics and rubbers. Results obtained for the two residues demonstrated the viability of the technology, however, with mixtures higher than 40% it was very difficult to develop a process under stable conditions. The optimum condition for producing a synthesis gas with a substantial heating value occurred with mixtures of 20% of polymeric wastes, which resulted in gases with a calorific value of 3.64 MJ/Nm3 for tires and 3.09 MJ/Nm3 for plastics and rubbers.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1095 ◽  
Author(s):  
Spyridon Alatzas ◽  
Konstantinos Moustakas ◽  
Dimitrios Malamis ◽  
Stergios Vakalis

The alignment of the Greek national legislation with the corresponding EU legislation has enhanced the national efforts to pursue renewable Combined Heat and Power (CHP) projects. The scope of the present study has been the identification of the available biomass resources and the assessment of their potential. In this paper, we present the results from the administrative regions of Crete, Thessaly, and Peloponnese. The levels of lignocellulosic biomass in Greece are estimated to be 2,132,286 tonnes on an annual basis, values that are very close to the cases of other Mediterranean countries like Italy and Portugal. In respect to the total agricultural residues, Crete produces 1,959,124 tonnes/year and Thessaly produces 1,759,457 tonnes/year. The most significant streams are identified to be olive pits, olive pruning, and cotton ginning remnants, with more than 100,000 tonnes/year each. In the latter part of this manuscript, a case study is presented for the development of a CHP gasification facility in Messenia. The biomass energy potential of the area is very promising, with about 3,800,000 GJ/year. The proposed small-scale gasification technology is expected to utilize 7956 tonnes of biomass per year and to produce 6630 MWh of electricity and 8580 MWh of thermal energy.


Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 102 ◽  
Author(s):  
Maw Maw Tun ◽  
Dagmar Juchelková

Nowadays, renewable energy utilization plays a key role in developing countries to fulfill the additional energy requirements of a country and reduce dependency on fossil fuels and traditional biomass consumption. As Myanmar has an agriculture-based economy and 48% of forest-cover (32.2 million hectares); biomass is one of the major renewable energy sources, contributing around 50% of total energy consumption. Therefore, the study aimed to highlight the available biomass sources and energy potential for the energy sector in Myanmar. In order to achieve the aim, the study collated the types, quantity and qualities of biomass resources, and energy utilization around Myanmar. Besides, the study synthesized and evaluated the energy potential of the major biomass resources coming from the agriculture sector, forest sector, livestock and poultry sector, and municipal sector. It was estimated that the total energy potential of the major biomass sources amounted to approximately 15.19 million tons of oil equivalent (Mtoe) in 2005 and 17.29 Mtoe in 2017, respectively. The unexploited biomass energy potential around the country was estimated to be nearly 50% higher than that of the projected biomass energy utilization during 2015–2019. Finally, the study concluded with recommendations to provide the future sustainable development of biomass energy in Myanmar.


2014 ◽  
Vol 659 ◽  
pp. 211-216
Author(s):  
Nikolaos Cristian Nutu ◽  
Constantin Pana ◽  
Alexandru Dobre ◽  
Niculae Negurescu ◽  
Alexandru Cernat

The severe legislation regarding pollution from actual time determine us to find new alternative solutions for diesel engine fuelling. This paper objective is the use of LPG as alternative fuel at a diesel engine in the purpose of pollutant emissions level decreasing in general and especially of NOx and smoke emissions. Is difficult to use LPG as single fuel at the diesel engine because it has an high auto ignition endurance (CN = -3). There are many fuelling methods of the diesel engine with LPG, but the authors of this paper used the diesel-gas method for a 1,5 l engine fuelling. The research followed the establishment of the optimal LPG cyclic dose and the diesel engine adjustments for different engine operating regimen. The paper presents results of some theoretical and experimental investigations of the LPG fuelled diesel engine. Three substitute ratios of diesel fuel with LPG were taken into account for full load and 2000 rpm engine speed. Thus, the NOx emissions decreased with 20-28 % for different substitute ratios of diesel fuel with LPG. The smoke emission decreased with 35-47% for same substitute ratios. LPG fuelling represents a very good solution for a cleaner environment.


Sign in / Sign up

Export Citation Format

Share Document