scholarly journals The Impact of Thermal Treatment on Light-Induced Degradation of Multicrystalline Silicon PERC Solar Cell

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 416 ◽  
Author(s):  
Shude Zhang ◽  
Jiaqi Peng ◽  
Hongqiang Qian ◽  
Honglie Shen ◽  
Qingzhu Wei ◽  
...  

Multicrystalline silicon (mc-Si) PERC (passivated emitter and rear cell) solar cells suffer from severe light-induced degradation (LID), which mainly consists of two mechanisms, namely, BO-LID (boron–oxygen complex-related LID) and LeTID (light and elevated temperature induced degradation). The impact of thermal treatment on the LID of a mc-Si PERC solar cell is investigated in this work. The LID of mc-Si PERC solar cells could be alleviated by lowering the peak temperature of thermal treatment (namely sintering), perhaps because fewer impurities present in mc-Si tended to dissolve into interstitial atoms, which have the tendency to form LeTID-related recombination active complexes. The LID could also be effectively restrained by partially replacing the boron dopant with gallium, which is ascribed to the decreased amount of boron–oxygen (B–O) complexes. This work provides a facile way to solve the severe LID problem in mc-Si PERC solar cells in mass production.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
F. X. Abomo Abega ◽  
A. Teyou Ngoupo ◽  
J. M. B. Ndjaka

Numerical modelling is used to confirm experimental and theoretical work. The aim of this work is to present how to simulate ultrathin hydrogenated amorphous silicon- (a-Si:H-) based solar cells with a ITO BRL in their architectures. The results obtained in this study come from SCAPS-1D software. In the first step, the comparison between the J-V characteristics of simulation and experiment of the ultrathin a-Si:H-based solar cell is in agreement. Secondly, to explore the impact of certain properties of the solar cell, investigations focus on the study of the influence of the intrinsic layer and the buffer layer/absorber interface on the electrical parameters ( J SC , V OC , FF, and η ). The increase of the intrinsic layer thickness improves performance, while the bulk defect density of the intrinsic layer and the surface defect density of the buffer layer/ i -(a-Si:H) interface, respectively, in the ranges [109 cm-3, 1015 cm-3] and [1010 cm-2, 5 × 10 13  cm-2], do not affect the performance of the ultrathin a-Si:H-based solar cell. Analysis also shows that with approximately 1 μm thickness of the intrinsic layer, the optimum conversion efficiency is 12.71% ( J SC = 18.95   mA · c m − 2 , V OC = 0.973   V , and FF = 68.95 % ). This work presents a contribution to improving the performance of a-Si-based solar cells.


RSC Advances ◽  
2020 ◽  
Vol 10 (65) ◽  
pp. 39916-39921
Author(s):  
Bo Liu ◽  
Xiaobo Wang ◽  
Lang Li ◽  
Gang Wang

The new low bandgap benzo[1,2-b:4,5-b′]difuran (BDF)-based organic small molecule, namely B1, was synthesized by Stille coupling polymerization reactions.


2019 ◽  
Vol 36 (3) ◽  
pp. 95-99
Author(s):  
Piotr Sobik ◽  
Radosław Pawłowski ◽  
Anna Pluta ◽  
Olgierd Jeremiasz ◽  
Kazimierz Drabczyk ◽  
...  

Purpose The purpose of this paper is to investigate the behavior of interconnections between solar cells in a glass-free solar modules. As glass weight can be a limitation, it is still interesting to investigate other types of systems, especially when the glass was replaced with a polymeric front sheet. Such systems can be more sensitive for the solar cell interconnection ribbon fatigue. Design/methodology/approach To examine this effect, the set of glass-based and glass-free modules were prepared using various ribbon thickness and treatment concerning its stretching or curving before lamination. Furthermore, additional reinforcement of the connection between the ribbon and the solar cell was proposed. The prepared modules were exposed to the cyclic temperature variation in the environment chamber. The number of cycles after which the interconnection maintains its conductivity was noted. Findings Changing the outer layers into more elastic ones requires additional care for the ribbon treatment because interconnections become more sensitive for a system relative displacement. To secure interconnection before fatigue an additional curving of ribbon between solar cells can be introduced whereas the best results were obtained for a system with aluminum plate laminated as an interlayer. Originality/value The paper presents a new system of a glass-free solar module based on epoxy-glass fiber composite as a backsheet. The glass front sheet was replaced with an elastic, transparent polymer. Such construction can be used in a system where the glass weight is a limitation. As glass has a structural function in traditional modules and limits fatigues of interconnections the proposed system requires additional ribbon treatment to preserve long module life-span.


1997 ◽  
Vol 467 ◽  
Author(s):  
C. R. Wronski

ABSTRACTThe quest for understanding and especially controlling the reversible light induced changes in a-Si:H based materials has been ongoing for the last twenty years. This has been accompanied by a corresponding large effort in minimizing their effects on more efficient a-Si:H based solar cells. Despite the complexities in both the phenomena as well as the solar cells, progress has been made in both the scientific and technological arenas. This paper briefly reviews primarily studies on the characterization and reduction of the metastable changes in materials and the correlation of these changes with those in efficient solar cells. It will discuss the impact of studies on materials as well as the continuous advances made with “engineering” of solar cell structures on their improved stabilized performance.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
S. Binetti ◽  
M. Acciarri ◽  
A. Le Donne ◽  
M. Morgano ◽  
Y. Jestin

Today, after more than 70 years of continued progress on silicon technology, about 85% of cumulative installed photovolatic (PV) modules are based on crystalline silicon (c-Si). PV devices based on silicon are the most common solar cells currently being produced, and it is mainly due to silicon technology that the PV has grown by 40% per year over the last decade. An additional step in the silicon solar cell development is ongoing, and it is related to a further efficiency improvement through defect control, device optimization, surface modification, and nanotechnology approaches. This paper attempts to briefly review the most important advances and current technologies used to produce crystalline silicon solar devices and in the meantime the most challenging and promising strategies acting to increase the efficiency to cost/ratio of silicon solar cells. Eventually, the impact and the potentiality of using a nanotechnology approach in a silicon-based solar cell are also described.


2021 ◽  
Vol 2128 (1) ◽  
pp. 012009
Author(s):  
Hassan Ismail Abdalmageed ◽  
Mostafa Fedawy ◽  
Moustafa H. Aly

Abstract This article uses computational models to evaluate the potential of copper-indium-gallium-diselenide (CIGS) thin film solar cells. The use of cadmium sulphide (CdS) renders the solar cell environmentally hazardous. A zinc sulphide (ZnS) that is non-toxic and has a large bandgap is studied as a potential replacement for cadmium sulphide in CIGS-based solar cells. The present research focuses on the impact of the CIGS-based solar cell bandgap absorber layer by increasing the absorber layer thickness (0.1-2 μm) using the solar cell simulator simulation tool SCAPS. The basic simulation produces 18.2 % efficiency with a CdS buffer layer, which is 9.95% better than the previously published work. The Simulated efficiency is 22.16% for the CIGS solar cell using ZnS. The simulation of solar cell characteristics of how the thickness of the absorber layer, the gallium grading (efficiency ranges up to 22.25 %) is demonstrated, showing the effect of buffer layer (ZnS) on the current of short-circuit density (JSC), open-circuit voltage (Voc), fill factor (FF), and efficiency (η) of the solar cell.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3132
Author(s):  
Maruthamuthu Subramanian ◽  
Omar M. Aldossary ◽  
Manawwer Alam ◽  
Mohd Ubaidullah ◽  
Sreedevi Gedi ◽  
...  

Minimizing the photon losses by depositing an anti-reflection layer can increase the conversion efficiency of the solar cells. In this paper, the impact of anti-reflection coating (ARC) for enhancing the efficiency of silicon solar cells is presented. Initially, the refractive indices and reflectance of various ARC materials were computed numerically using the OPAL2 calculator. After which, the reflectance of SiO2,TiO2,SiNx with different refractive indices (n) were used for analyzing the performance of a silicon solar cells coated with these materials using PC1D simulator. SiNx and TiO2 as single-layer anti-reflection coating (SLARC) yielded a short circuit current density (Jsc) of 38.4 mA/cm2 and 38.09mA/cm2 respectively. Highest efficiency of 20.7% was obtained for the SiNx ARC layer with n=2.15. With Double-layer anti-reflection coating (DLARC), the Jsc improved by ∼0.5 mA/cm2 for SiO2/SiNx layer and hence the efficiency by 0.3%. Blue loss reduces significantly for the DLARC compared with SLARC and hence increase in Jsc by 1 mA/cm2 is observed. The Jsc values obtained is in good agreement with the reflectance values of the ARC layers. The solar cell with DLARC obtained from the study showed that improved conversion efficiency of 21.1% is obtained. Finally, it is essential to understand that the key parameters identified in this simulation study concerning the DLARC fabrication will make experimental validation faster and cheaper.


2019 ◽  
Vol 7 (40) ◽  
pp. 12641-12649 ◽  
Author(s):  
Bin Li ◽  
Qilin Zhang ◽  
Gaole Dai ◽  
Hua Fan ◽  
Xin Yuan ◽  
...  

We performed side-chain fluorination and alkylthio substituent in a template conjugated polymer and further investigate their impact on polymer–polymer solar cell performance.


Sign in / Sign up

Export Citation Format

Share Document