The Light Induced Changes in A-Si: H Materials and Solar Cells—Where We are Now

1997 ◽  
Vol 467 ◽  
Author(s):  
C. R. Wronski

ABSTRACTThe quest for understanding and especially controlling the reversible light induced changes in a-Si:H based materials has been ongoing for the last twenty years. This has been accompanied by a corresponding large effort in minimizing their effects on more efficient a-Si:H based solar cells. Despite the complexities in both the phenomena as well as the solar cells, progress has been made in both the scientific and technological arenas. This paper briefly reviews primarily studies on the characterization and reduction of the metastable changes in materials and the correlation of these changes with those in efficient solar cells. It will discuss the impact of studies on materials as well as the continuous advances made with “engineering” of solar cell structures on their improved stabilized performance.

2000 ◽  
Vol 609 ◽  
Author(s):  
Randy Koval ◽  
Xinwei Niu ◽  
Joshua Pearce ◽  
Lihong Jiao ◽  
Gautam Ganguly ◽  
...  

ABSTRACTStudies have been carried out on the kinetics of light induced changes in thin films and solar cells fabricated in different laboratories. Unlike the many studies on undiluted a-Si:H films the kinetics reported here are for 1 sun illuminations carried out to the degraded steady state (DSS). The light induced changes at temperatures from 25 to 100°C were characterized with electron mobility lifetime products and subgap absorption in films and fill factors in solar cells. The significant changes in the degradation kinetics that occur in these materials in this t mperature range have further confirmed the importance of charged defects, not only in the annealed state, but also in the degraded steady states. Results are also presented on corresponding solar cell structures, which also indicate that defects other than neutral dangling bonds have to be taken into account if any meaningful evaluation is to be made of their solar cell properties.


1985 ◽  
Vol 49 ◽  
Author(s):  
C. R. Wronski

Continuous progress is being made in the conversion efficiencies of a- Si:H solar cells and efficiencies in excess of 11% have been achieved. Because of these advances and the development of a-Si:H cell technologies there is an increased interest in the long term performance of a-Si:H cells and the mechanisms responsible for their degradation. The reversible light-induced changes in a-Si:H solar cells are generally associated with the Staebler-Wronski effect (SWE) (1). This effect has been studied on a wide range of a-Si:H materials using a variety of different experimental techniques and this talk reviews the results that have been obtained on a- Si:H films and solar cells (2). It discusses in greater detail recent studies on a-Si:H solar cell structures in which simultanous measurements have been made on the changes in both the photovoltaic properties as well as their electronic properties and densities of gap states. In particular it focuses on several results obtained with semitransparent metal-undoped a-Si:H Schottky barrier solar cell structures (3).


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
F. X. Abomo Abega ◽  
A. Teyou Ngoupo ◽  
J. M. B. Ndjaka

Numerical modelling is used to confirm experimental and theoretical work. The aim of this work is to present how to simulate ultrathin hydrogenated amorphous silicon- (a-Si:H-) based solar cells with a ITO BRL in their architectures. The results obtained in this study come from SCAPS-1D software. In the first step, the comparison between the J-V characteristics of simulation and experiment of the ultrathin a-Si:H-based solar cell is in agreement. Secondly, to explore the impact of certain properties of the solar cell, investigations focus on the study of the influence of the intrinsic layer and the buffer layer/absorber interface on the electrical parameters ( J SC , V OC , FF, and η ). The increase of the intrinsic layer thickness improves performance, while the bulk defect density of the intrinsic layer and the surface defect density of the buffer layer/ i -(a-Si:H) interface, respectively, in the ranges [109 cm-3, 1015 cm-3] and [1010 cm-2, 5 × 10 13  cm-2], do not affect the performance of the ultrathin a-Si:H-based solar cell. Analysis also shows that with approximately 1 μm thickness of the intrinsic layer, the optimum conversion efficiency is 12.71% ( J SC = 18.95   mA · c m − 2 , V OC = 0.973   V , and FF = 68.95 % ). This work presents a contribution to improving the performance of a-Si-based solar cells.


2019 ◽  
Vol 36 (3) ◽  
pp. 95-99
Author(s):  
Piotr Sobik ◽  
Radosław Pawłowski ◽  
Anna Pluta ◽  
Olgierd Jeremiasz ◽  
Kazimierz Drabczyk ◽  
...  

Purpose The purpose of this paper is to investigate the behavior of interconnections between solar cells in a glass-free solar modules. As glass weight can be a limitation, it is still interesting to investigate other types of systems, especially when the glass was replaced with a polymeric front sheet. Such systems can be more sensitive for the solar cell interconnection ribbon fatigue. Design/methodology/approach To examine this effect, the set of glass-based and glass-free modules were prepared using various ribbon thickness and treatment concerning its stretching or curving before lamination. Furthermore, additional reinforcement of the connection between the ribbon and the solar cell was proposed. The prepared modules were exposed to the cyclic temperature variation in the environment chamber. The number of cycles after which the interconnection maintains its conductivity was noted. Findings Changing the outer layers into more elastic ones requires additional care for the ribbon treatment because interconnections become more sensitive for a system relative displacement. To secure interconnection before fatigue an additional curving of ribbon between solar cells can be introduced whereas the best results were obtained for a system with aluminum plate laminated as an interlayer. Originality/value The paper presents a new system of a glass-free solar module based on epoxy-glass fiber composite as a backsheet. The glass front sheet was replaced with an elastic, transparent polymer. Such construction can be used in a system where the glass weight is a limitation. As glass has a structural function in traditional modules and limits fatigues of interconnections the proposed system requires additional ribbon treatment to preserve long module life-span.


1986 ◽  
Vol 70 ◽  
Author(s):  
Y. Kuwano

ABSTRACTRecent advances in a-Si solar cells in Japan are reviewed. Improvements in single-junction and multi-junction solar cells are described in three main points, namely, fabrication methods, materials, and cell structures. Recently, a conversion efficiency of 11.7% was obtained for a single-junction structure. For an a-Si/poly-Si stacked structure and an a-Si/(CdS/CdTe) 4 terminal structure, conversion efficiencies of more than 13% were achieved.Then recent advances in the prevention of the light induced degradation of a-Si solar cells is mentioned. Several methods which can improve the a-Si solar cell stability are described.Finally, the present status of the industrialization of a-Si solar cells and some of the latest applications are described together with their propects.


2015 ◽  
Vol 1125 ◽  
pp. 641-647 ◽  
Author(s):  
Parvathy Rajendran ◽  
Howard Smith

Electric unmanned aerial vehicle (UAV) systems powered solely by battery cannot achieve long endurance. Despite recent improvements in battery technology, UAVs barely last for 4 hours, thereby decreasing the attractiveness of battery-powered UAVs. Progress has been made in developing hybrid-powered solar and battery systems for UAVs. However, the small number of solar UAVs developed indicates the research gap, particularly in the aspect of power system and integration. Accordingly, this paper provides a detailed review of solar cell and battery development applicable to small UAVs. This review includes the technologies of miniature electric motors, batteries, fuel cells, and solar cells. A comprehensive battery and solar cell technology trend is then discussed. This wok elucidates the effect of solar and battery technology progress on solar UAV development. The combination of electric motor, battery, and solar cells offers an excellent solution to the requirements of various long-endurance applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
S. Binetti ◽  
M. Acciarri ◽  
A. Le Donne ◽  
M. Morgano ◽  
Y. Jestin

Today, after more than 70 years of continued progress on silicon technology, about 85% of cumulative installed photovolatic (PV) modules are based on crystalline silicon (c-Si). PV devices based on silicon are the most common solar cells currently being produced, and it is mainly due to silicon technology that the PV has grown by 40% per year over the last decade. An additional step in the silicon solar cell development is ongoing, and it is related to a further efficiency improvement through defect control, device optimization, surface modification, and nanotechnology approaches. This paper attempts to briefly review the most important advances and current technologies used to produce crystalline silicon solar devices and in the meantime the most challenging and promising strategies acting to increase the efficiency to cost/ratio of silicon solar cells. Eventually, the impact and the potentiality of using a nanotechnology approach in a silicon-based solar cell are also described.


2005 ◽  
Vol 865 ◽  
Author(s):  
S. Smith ◽  
R. Dhere ◽  
T. Gessert ◽  
P. Stradins ◽  
T. Wang ◽  
...  

AbstractGeneration, transport and collection of carriers in polycrystalline (PX) solar cells and their constituent materials are poorly understood, and significantly different than in their single-crystal counterparts. Recent theoretical and experimental results have put forth the expectation that grain boundaries in PX-solar cell materials such as CdTe and CuInGaSe2, either as-grown or after appropriate post-growth treatment, may have electronic properties which are advantageous to charge separation and solar cell operation[1-3]. However, a microscopic picture of the spatial variations in the optoelectronic properties of these materials is, for the most part, still lacking. The goal of the work reported here is to explore the optoelectronic and spectroscopic properties of grain-boundaries in these materials at the nanometer length-scale, via novel, high-resolution optical techniques. Towards this end, a significant enhancement in photo-response near grain boundaries in CdTe solar cells, consistent with models put forth in reference 2, was observed via near-field Optical Beam Induced Current (n-OBIC) [4]. A systematic μ-PL study of the effect of CdC12-treatment on recombination in CdTe/CdS solar cell structures of varying thickness directly examined the variation in optoelectronic properties at grain-boundaries in this material, revealing the grain-boundary and surface passivation effects of this important post-growth processing step. For comparison, we also studied the effects of SiNx post-growth treatment and annealing on the photo-response of PX-silicon solar cells using n-OBIC. These results and our most-recent n-OBIC measurements in CdTe and CuInGaSe2 solar cells are discussed.


2021 ◽  
Vol 2128 (1) ◽  
pp. 012009
Author(s):  
Hassan Ismail Abdalmageed ◽  
Mostafa Fedawy ◽  
Moustafa H. Aly

Abstract This article uses computational models to evaluate the potential of copper-indium-gallium-diselenide (CIGS) thin film solar cells. The use of cadmium sulphide (CdS) renders the solar cell environmentally hazardous. A zinc sulphide (ZnS) that is non-toxic and has a large bandgap is studied as a potential replacement for cadmium sulphide in CIGS-based solar cells. The present research focuses on the impact of the CIGS-based solar cell bandgap absorber layer by increasing the absorber layer thickness (0.1-2 μm) using the solar cell simulator simulation tool SCAPS. The basic simulation produces 18.2 % efficiency with a CdS buffer layer, which is 9.95% better than the previously published work. The Simulated efficiency is 22.16% for the CIGS solar cell using ZnS. The simulation of solar cell characteristics of how the thickness of the absorber layer, the gallium grading (efficiency ranges up to 22.25 %) is demonstrated, showing the effect of buffer layer (ZnS) on the current of short-circuit density (JSC), open-circuit voltage (Voc), fill factor (FF), and efficiency (η) of the solar cell.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3132
Author(s):  
Maruthamuthu Subramanian ◽  
Omar M. Aldossary ◽  
Manawwer Alam ◽  
Mohd Ubaidullah ◽  
Sreedevi Gedi ◽  
...  

Minimizing the photon losses by depositing an anti-reflection layer can increase the conversion efficiency of the solar cells. In this paper, the impact of anti-reflection coating (ARC) for enhancing the efficiency of silicon solar cells is presented. Initially, the refractive indices and reflectance of various ARC materials were computed numerically using the OPAL2 calculator. After which, the reflectance of SiO2,TiO2,SiNx with different refractive indices (n) were used for analyzing the performance of a silicon solar cells coated with these materials using PC1D simulator. SiNx and TiO2 as single-layer anti-reflection coating (SLARC) yielded a short circuit current density (Jsc) of 38.4 mA/cm2 and 38.09mA/cm2 respectively. Highest efficiency of 20.7% was obtained for the SiNx ARC layer with n=2.15. With Double-layer anti-reflection coating (DLARC), the Jsc improved by ∼0.5 mA/cm2 for SiO2/SiNx layer and hence the efficiency by 0.3%. Blue loss reduces significantly for the DLARC compared with SLARC and hence increase in Jsc by 1 mA/cm2 is observed. The Jsc values obtained is in good agreement with the reflectance values of the ARC layers. The solar cell with DLARC obtained from the study showed that improved conversion efficiency of 21.1% is obtained. Finally, it is essential to understand that the key parameters identified in this simulation study concerning the DLARC fabrication will make experimental validation faster and cheaper.


Sign in / Sign up

Export Citation Format

Share Document