scholarly journals Influence of Sampling Delay on the Estimation of Lithium-Ion Battery Parameters and an Optimized Estimation Method

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1878
Author(s):  
Bing Jiang ◽  
Zeqi Chen ◽  
Feifan Chen

The equivalent-circuit model (ECM) is widely used in online estimating the parameters and states of lithium-ion batteries. However, the sampling delay between the voltage and current of a battery is generally overlooked, which is unavoidable in a modular battery management system (BMS) and would lead to wrong results in the estimation of battery parameters and states. In this paper, with the first-order resistor–capacitor (RC) model as our battery model, we analyze the influence mechanism of sampling delay and then propose an optimized method for online estimating battery parameters. The mathematical model derived from the first-order RC model and the approximation method of first-order derivative are optimized. The recursive least squares (RLS) algorithm is used for identifying the parameters of the model. In order to verify the proposed method, a modular battery test system with high sampling frequency and high synchronization accuracy is developed. The experiment results indicate that the sampling delay would cause the estimation process to fluctuate, and the optimized method effectively improves the tolerance range of sampling delay.

Author(s):  
Meiying Li ◽  
Zhiping Guo ◽  
Yuan Li ◽  
Wenliang Wu

Abstract The state of charge (SoC) of the battery is a typical characterization of the operating state of the battery and criterion for the battery management system (BMS) control strategy, which must be evaluated precisely. The establishment of an accurate algorithm of SoC estimation is of great significance for BMS, which can help the driver judge the endurance mileage of electric vehicle (EV) correctly. In this paper, a second-order resistor-capacity (RC) equivalent circuit model is selected to characterize the electrical characteristics based on the electrochemical model of the LiFePO4/graphene (LFP/G) hybrid cathode lithium-ion battery. Moreover, seven open circuit voltage (OCV) models are compared and the best one of them is used to simulate the dynamic characteristics of the battery. It is worth mentioning that an improved test method is proposed, which is combined with least square for parameters identification. In addition, the extended Kalman filter (EKF) algorithm is selected to estimate the SoC during the charging and discharging processes. The simulation results show that the EKF algorithm has the higher accuracy and rapidity than the KF algorithm.


2020 ◽  
Vol 9 (2) ◽  
pp. 185-196
Author(s):  
Liu Fang ◽  
◽  
Liu Xinyi ◽  
Su Weixing ◽  
Chen Hanning ◽  
...  

To realize a fast and high-precision online state-of-health (SOH) estimation of lithium-ion (Li-Ion) battery, this article proposes a novel SOH estimation method. This method consists of a new SOH model and parameters identification method based on an improved genetic algorithm (Improved-GA). The new SOH model combines the equivalent circuit model (ECM) and the data-driven model. The advantages lie in keeping the physical meaning of the ECM while improving its dynamic characteristics and accuracy. The improved-GA can effectively avoid falling into a local optimal problem and improve the convergence speed and search accuracy. So the advantages of the SOH estimation method proposed in this article are that it only relies on battery management systems (BMS) monitoring data and removes many assumptions in some other traditional ECM-based SOH estimation methods, so it is closer to the actual needs for electric vehicle (EV). By comparing with the traditional ECM-based SOH estimation method, the algorithm proposed in this article has higher accuracy, fewer identification parameters, and lower computational complexity.


Batteries ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 51
Author(s):  
Manh-Kien Tran ◽  
Andre DaCosta ◽  
Anosh Mevawalla ◽  
Satyam Panchal ◽  
Michael Fowler

Lithium-ion (Li-ion) batteries are an important component of energy storage systems used in various applications such as electric vehicles and portable electronics. There are many chemistries of Li-ion battery, but LFP, NMC, LMO, and NCA are four commonly used types. In order for the battery applications to operate safely and effectively, battery modeling is very important. The equivalent circuit model (ECM) is a battery model often used in the battery management system (BMS) to monitor and control Li-ion batteries. In this study, experiments were performed to investigate the performance of three different ECMs (1RC, 2RC, and 1RC with hysteresis) on four Li-ion battery chemistries (LFP, NMC, LMO, and NCA). The results indicated that all three models are usable for the four types of Li-ion chemistries, with low errors. It was also found that the ECMs tend to perform better in dynamic current profiles compared to non-dynamic ones. Overall, the best-performed model for LFP and NCA was the 1RC with hysteresis ECM, while the most suited model for NMC and LMO was the 1RC ECM. The results from this study showed that different ECMs would be suited for different Li-ion battery chemistries, which should be an important factor to be considered in real-world battery and BMS applications.


2013 ◽  
Vol 805-806 ◽  
pp. 1659-1663 ◽  
Author(s):  
Ze Cheng ◽  
Qiu Yan Zhang ◽  
Yu Hui Zhang

The real-timely estimation of the SOC (state of charge) is the key technology in Li-ion battery management system. In this paper, to overcome the error of the SOC estimation of Extended Kalman filter (EKF), a new estimation method based on modified-strong tracking filter (MSTF) is applied to SOC estimation of Li-ion battery, based on the second-order RC equivalent circuit model. Experiments are made to compare the new filter with the EKF and Coulomb counting approach (Ah). The simulation results demonstrate that the new filter algorithm MSTF used in this paper has higher filtering accuracy under the same conditions.


2021 ◽  
Vol 2066 (1) ◽  
pp. 012110
Author(s):  
Jie Qu ◽  
Meihua Huang ◽  
Chao Wang

Abstract In order to test the bulk force and expansion displacement of lithium-ion batteries, it is planned to develop a corresponding test-bench, which is mainly composed of a measurement-control system and a mechanical system. To improve the accuracy of the test data, the coupled thermal-structure simulation of the test system in the mechanical system of the test-bench is carried out to select an optimal mechanical structure of the test system. At the same time, for safe and convenient testing, a monitoring-testing system software was developed to ensure the reliability and safety of data collection. Finally, through the test-bench, the battery expansion displacement-SOC curve and the battery bulk force-SOC curve under different discharge rates were tested, providing a basis for the development of a battery management system coupling temperature-current-voltage-displacement-force.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Zheng Liu ◽  
Xuanju Dang

As one of the most important features representing the operating state of power battery in electric vehicles (EVs), state of charge (SOC) and capacity estimation is a crucial assessment index in battery management system (BMS). This paper presents a fusion method of SOC and capacity estimation with identified model parameters. The equivalent circuit model (ECM) parameters are obtained online by variable forgetting factor recursive least squares (VFFRLS), which is based on incremental ECM analysis to respond to the inconsistent rates of parameters variation. The independent open-circuit voltage (OCV) estimation way is designed to reduce the effect of mutual coupling between OCV and ECM parameters. Based on the identified ECM parameters and OCV, a dual adaptive H infinity filter (AHIF) combined with strong tracking filter (STF) is proposed to estimate battery SOC and capacity. A new quadratic function as capacity error compensation is introduced to represent the relationship between capacity and OCV. The adaptive strategy of the AHIF can adjust noise covariance and restricted factor, while the STF can regulate prior state covariance by adding suboptimum fading factor. The results of experiment and simulation show the merits of proposed approach in SOC and capacity estimation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Gaoya Shi ◽  
Siqi Chen ◽  
Hao Yuan ◽  
Heze You ◽  
Xueyuan Wang ◽  
...  

Online state of health (SOH) estimation is essential for lithium-ion batteries in a battery management system. As the conventional SOH indicator, the capacity is challenging to be estimated online. Apart from the capacity, various indicators related to the internal resistance are proposed as indicators for the SOH estimation. However, research gaps still exist in terms of optimal resistance-related indicators, online acquisition of indicators, temperature disturbance elimination, and state of charge (SOC) disturbance elimination. In this study, the equivalent circuit model parameters are identified based on recursive least square method in dynamic working conditions in the life span. Statistical analysis methods including multiple stepwise regression analysis and path analysis are introduced to characterize the sensitivity of the parameters to SOH estimation. Based on the above approach, the coupling relationship between the parameters is comprehensively analyzed. Results indicate that the ohmic resistance R0 and the diffusion capacitance Cd are the most suitable parameters for the SOH indication. Furthermore, R0 and Cd are proved to be exponentially correlated to the ambient temperature, while SOC demonstrates a quadratic trend on them. To eliminate the disturbance caused by the ambient temperature and SOC, a compensating method is further proposed. Finally, a mapping relationship between SOH and the indicators under normal operations is established. SOH can be estimated with the maximum error of 2.301%, which proves the reliability and feasibility of the proposed indicators and estimation method.


Author(s):  
Wei Yue ◽  
Cong-zhi Liu ◽  
Liang Li ◽  
Xiang Chen ◽  
Fahad Muhammad

This work is focused on designing a fractional-order [Formula: see text] observer and applying it into the state of charge (SOC) estimation for lithium-ion battery pack system. Firstly, a fractional order equivalent circuit model based on the fractional capacitor is established and identified. Secondly, the SOC estimation method based on the fractional-order [Formula: see text] observer is proposed. The nonlinear intrinsic relationship between the open-circuit voltage and SOC is described as a polynomial function, and its Lipschitz proposition has been discussed. Then, the nonlinear observer design criterion is established based on the Lyapunov method. Finally, the effectiveness of the proposed method is verified with high accuracy and robustness by the experiment results.


Sign in / Sign up

Export Citation Format

Share Document