scholarly journals Flexibility Potential of Space Heating Demand Response in Buildings for District Heating Systems

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2874 ◽  
Author(s):  
Dmytro Romanchenko ◽  
Emil Nyholm ◽  
Mikael Odenberger ◽  
Filip Johnsson

Using an integrated demand-supply optimization model, this work investigates the potential for flexible space heating demand, i.e., demand response (DR), in buildings, as well as its effects on the heating demand and the operation of a district heating (DH) system. The work applies a building stock description, including both residential and non-residential buildings, and employs a representation of the current DH system of the city of Gothenburg, Sweden as a case study. The results indicate that space heating DR in buildings can have a significant impact on the cost-optimal heat supply of the city by smoothing variations in the system heat demand. DR implemented via indoor temperature deviations of as little as +1 °C can smoothen the short-term (daily) fluctuations in the system heating demand by up to 18% over a period of 1 year. The smoothening of the demand reduces the cost of heat generation, in that the heat supply and number of full-load hours of base-load heat generation units increase, while the number of starts for the peaking units decreases by more than 80%. DR through temperature deviations of +3 °C confers diminishing returns in terms of its effects on the heat demand, as compared to the DR via +1 °C.

2013 ◽  
Vol 20 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Algirdas Kuprys ◽  
Ramūnas Gatautis

The renovation of multi-storey residential buildings reduces heat consumption intensity and decreases heat demand, which may have a harmful effect on a district heating supply system. The paper analyses the heat loss change in four district heating distribution networks (DHNs) of Kaunas at the various scenarios of buildings and DHN renovation stages. A bundle of genetic algorithm software package was used to carry out the districts’ distribution network hydraulic calculations in the case of building renovation without changing the hydrodynamic and network routes. The experimental data were used to calculate heat loss for old and new pipes. The computer data of networks used to summarise the cost of DHN then for the renovation of buildings as well as for renovation progress will go evenly with DHN refurbishment. Network optimization results were summarised by functional dependence. The comparison of the projects’ efficiency was analysed in the following cases: the diameters of pipes of DHN were not changed, new diameters of pipes were integrated partly after partial residential buildings renovation and after a complete renovation of residential building and optimisation of pipeline diameters. The efficiency of separate guidelines of the DHN refurbishment project was summarised by performing sensitivity analysis.


2021 ◽  
Vol 289 ◽  
pp. 02003
Author(s):  
Oleg Khamisov ◽  
Andrey Penkovskii ◽  
Angelica Kravets

The pricing of thermal energy is an important component of the efficient operation of the heat supply system. The article deals with the calculation of the cost of heat for consumers and producers of heat as based on the optimization problem of operation modes of the heat supply system with its further reduction to the conditions of optimality. The latter is to be achieved on the basis of the Lagrange function, with undetermined Lagrange multipliers obtained in the calculation process to be interpreted as nodal (marginal) prices of heat. This approach allows one to determine the pricing at each node. Based on the calculation of nodal prices of heat we determine the cost of heat transportation. Backed by the methodological tools developed, we have performed a demonstration of the calculation of nodal prices of heat and developed an algorithm for calculation of nodal prices of heat generation and consumption and overall technical and economic performance indicators of the heat supply system.


2014 ◽  
Vol 899 ◽  
pp. 16-23
Author(s):  
Tamás Csoknyai

The residential buildings built with prefabricated technology (also called panel buildings) represent a significant part of the building stock, particularly in Eastern Europe. These buildings are typically 30-40 years old and due to their poor energy performance they have been in the focus of energy policy makers over the recent years. These buildings are typically connected to district heating systems and the continuously decreasing heat demand caused by the renovation subsidy programs resulting in risks of inefficient operation and on the long term it questions the viability of the district heating systems. Therefore it is particularly important to have a clear picture on the energy consumption trends about this segment of the building stock. In this paper, the building stock of the city of Debrecen connected to district heating is analysed. The current energy consumption figures of the buildings are analysed. In Debrecen, the share of retrofitted buildings is relatively low (appr. 15%), therefore a future trend analysis was also carried out. The results of this study can be interesting for other cities as well, particularly those with a significant share of “panel buildings”.


2021 ◽  
Vol 13 (4) ◽  
pp. 1595
Author(s):  
Valeria Todeschi ◽  
Roberto Boghetti ◽  
Jérôme H. Kämpf ◽  
Guglielmina Mutani

Building energy-use models and tools can simulate and represent the distribution of energy consumption of buildings located in an urban area. The aim of these models is to simulate the energy performance of buildings at multiple temporal and spatial scales, taking into account both the building shape and the surrounding urban context. This paper investigates existing models by simulating the hourly space heating consumption of residential buildings in an urban environment. Existing bottom-up urban-energy models were applied to the city of Fribourg in order to evaluate the accuracy and flexibility of energy simulations. Two common energy-use models—a machine learning model and a GIS-based engineering model—were compared and evaluated against anonymized monitoring data. The study shows that the simulations were quite precise with an annual mean absolute percentage error of 12.8 and 19.3% for the machine learning and the GIS-based engineering model, respectively, on residential buildings built in different periods of construction. Moreover, a sensitivity analysis using the Morris method was carried out on the GIS-based engineering model in order to assess the impact of input variables on space heating consumption and to identify possible optimization opportunities of the existing model.


Author(s):  
Anna Volkova ◽  
Vladislav Mashatin ◽  
Aleksander Hlebnikov ◽  
Andres Siirde

Abstract The purpose of this paper is to offer a methodology for the evaluation of large district heating networks. The methodology includes an analysis of heat generation and distribution based on the models created in the TERMIS and EnergyPro software Data from the large-scale Tallinn district heating system was used for the approbation of the proposed methodology as a basis of the case study. The effective operation of the district heating system, both at the stage of heat generation and heat distribution, can reduce the cost of heat supplied to the consumers. It can become an important factor for increasing the number of district heating consumers and demand for the heat load, which in turn will allow installing new cogeneration plants, using renewable energy sources and heat pump technologies


Author(s):  
P C Warner ◽  
R A McFadden ◽  
R A J Moodie ◽  
G P White

Edinburgh and Belfast are two of the cities where the financial prospects for district heating from combined heat and power (CHP) are being investigated by consortia combining industrial membership (substantially the same for both) with strong local interests; the object is to learn whether city CHP schemes can appeal to the private investor. The paper deals with the historical build-up of interest in CHP in both places, leading to the formation of consortia in response to a government invitation, and the award of grant-in-aid announced in January 1985. It then explains how the two studies have been planned and sets out their content: the key technical and commercial factors, and also the statutory and other more general considerations. The work is well under way, and the paper reports on progress, including field work to ascertain heat demand, the choice of fuels and sites for heat-only sources and for the combined plant, and the sequencing of implementation progressively across the city.


Author(s):  
A. V. Kiryukhin ◽  
V. M. Sugrobov

The forecast geothermal resources of Kamchatka are sufficient to generate 3900 MW of electrical energy. The same resources for heat supply are estimated at a capacity of 1350 MWt (thermal). Thermohydrodynamic TOUGH2 modeling of exploitation of already identified productive hydrogeothermal reservoirs with installed energy properties allows us to predict: 1) the possibility of increasing the electrical performance of already operating areas of the Mutnovsky field up to 105 MW and the Pauzhetsky field up to 11 MW using binary technologies; 2) the possibility of increasing heat generation at the Paratunskoye field with submersible pumps up to 216 MWt, which will fully ensure the heat consumption of the district heating systems of Petropavlovsk-Kamchatsky.


2019 ◽  
Vol 135 ◽  
pp. 01031
Author(s):  
Mereke Agilbayeva ◽  
Alexey Kalinin

The district heating system of Karaganda (Kazakhstan) is considered in the article. The characteristics of the existing cogenerators and the state of the pipeline networks are given. Given the analysis of the existing state of the entire district heating of Karaganda. Proposed the program for the integrated development of the heat supply system bringing world experience in implementing the main development and modernization of heating networks. Shown the experience of reconstruction of heat supply facilities in the city of Karaganda within the framework of the state loan program “Nurly Zhol”. Based on the statistical data on the development of the city of Karaganda and its heat supply system the predicted heat loads are given until 2030. Due to the shortage of available heat capacity, options for the development of a centralized heat supply system in Karaganda are given and analyzed.


2019 ◽  
Vol 111 ◽  
pp. 06012
Author(s):  
Jad Al Koussa ◽  
Rutger Baeten ◽  
Nico Robeyn ◽  
Robbe Salenbien

A well performing District Heating Substation (DHS) is crucial for the efficiency of the District Heating (DH), especially with the shift towards low temperature 4th generation DH systems. For this reason, testing and characterization of commercially available DHSs becomes important to estimate their effect on the DH network. Within the thermo-technical laboratory of EnergyVille, a multipurpose test rig has been built for testing DHSs. In this setup, different DH conditions and heat demand profiles for space heating and for Domestic Hot Water (DHW) can be emulated. Independent tests have been performed on 4 DHSs from three different manufacturers, focused on the DHW preparation for low DH supply temperature and on the stand-by/keep-warm operation of the substations. The latter maintains a certain temperature within the heat exchanger to avoid delays in the delivery of DHW. The results showed that improvements are needed on DHW production for lower DH supply temperatures. Also, enhancements are needed to reduce losses from the keep-warm function. Given that DH systems can have thousands of substations, this will reduce the overall losses and improve the performance of the DH network.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4078
Author(s):  
Salman Siddiqui ◽  
Mark Barrett ◽  
John Macadam

The decarbonisation of heating in the United Kingdom is likely to entail both the mass adoption of heat pumps and widespread development of district heating infrastructure. Estimation of the spatially disaggregated heat demand is needed for both electrical distribution network with electrified heating and for the development of district heating. The temporal variation of heat demand is important when considering the operation of district heating, thermal energy storage and electrical grid storage. The difference between the national and urban heat demands profiles will vary due to the type and occupancy of buildings leading to temporal variations which have not been widely surveyed. This paper develops a high-resolution spatiotemporal heat load model for Great Britain (GB: England, Scotland a Wales) by identifying the appropriate datasets, archetype segmentation and characterisation for the domestic and nondomestic building stock. This is applied to a thermal model and calibrated on the local scale using gas consumption statistics. The annual GB heat demand was in close agreement with other estimates and the peak demand was 219 GWth. The urban heat demand was found to have a lower peak to trough ratio than the average national demand profile. This will have important implications for the uptake of heating technologies and design of district heating.


Sign in / Sign up

Export Citation Format

Share Document