scholarly journals Design and Test of Cryogenic Cold Plate for Thermal-Vacuum Testing of Space Components

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2991
Author(s):  
Díez-Jiménez ◽  
Alcover-Sánchez ◽  
Pereira ◽  
García ◽  
Vián

This paper proposes a novel cryogenic fluid cold plate designed for the testing of cryogenic space components. The cold plate is able to achieve cryogenic temperature operation down to −196 °C with a low liquid nitrogen (LN2) consumption. A good tradeoff between high rigidity and low thermal conduction is achieved thanks to a hexapod configuration, which is formed by six hinge–axle–hole articulations in which each linking rod bears only axial loads. Thus, there is not any stress concentration, which reduces the diameter of rod sections and reduces the rods’ thermal conduction. This novel design has a unique set of the following properties: Simple construction, low thermal conduction, high thermal inertia, lack of vibrational noise when cooling, isostatic structural behavior, high natural frequency response, adjustable position, vacuum-suitability, reliability, and non-magnetic. Additionally, the presented cold plate design is low-cost and can be easily replicated. Experimental tests showed that a temperature of at least −190 °C can be reached on the top surface of the cold plate with an LN2 consumption of 10 liters and a minimum vibration frequency of 115 Hz, which is high enough for most vibration tests of space components.

2017 ◽  
pp. 136-149
Author(s):  
GGD Costa ◽  
GR Solinger ◽  
MM Silva ◽  
RP Gracioli ◽  
FP Fernandes

In order to contribute with the most diverse research and development laboratories in its experiments, this paper presents the development methods for the construction of electric furnaces able to operate at temperatures up to 1200oC, with high thermal inertia and low cost. Research and development laboratories in Latin America face many difficulties in maintaining their experiments, especially those related to the synthesis of materials. However, many labs do not have the philosophical tradition of building their own research equipment, depending on whether importing or buying expensive equipment. In this article, we demonstrate the possibility of developing furnaces with good thermal homogeneity using low cost materials found throughout Latin America. Finally, we describe the construction methods and the materials used in the construction of two different furnaces operating at temperatures up to 400oC and 1200oC, presenting very good thermal inertia and homogeneity. With an operational temperature up to 1200 oC, both furnaces have thermal inertia and homogeneity.


2020 ◽  
Vol 10 (8) ◽  
pp. 2858 ◽  
Author(s):  
Guglielmina Mutani ◽  
Cristina Azzolino ◽  
Maurizio Macrì ◽  
Stefania Mancuso

Some straw buildings, which combine eco-sustainability with versatility, low cost, and fast construction times, have recently been built in Northern Italy. In this work, the technologies used to build straw houses are presented, and the characteristics of the raw materials, the straw bales, and the construction techniques are dealt with. Two straw buildings, which have different characteristics and types of application, are analyzed. The first building is a residential, nearly zero-energy building, which was built in Saluggia (Vercelli) in 2012. This house is presently inhabited by a family and is heated with a wood stove. The second building was built in 2014 in Verres (Aosta) and is a pre-assembled demonstration prototype used for teaching purposes. The thermal performance of the straw envelopes was evaluated during the heating season by measuring the thermal conductance of the straw walls through two experimental campaigns. Straw bale walls offer good insulating performance, as well as high thermal inertia, and can be used in green buildings since straw is derived from agricultural waste, does not require an industrial process, and is degradable. Finally, these characteristics of straw can be combined with its low cost. Local economic development in this field may be possible.


2021 ◽  
Vol 11 (11) ◽  
pp. 5008
Author(s):  
Juan José del Coz-Díaz ◽  
Felipe Pedro Álvarez-Rabanal ◽  
Mar Alonso-Martínez ◽  
Juan Enrique Martínez-Martínez

The thermal inertia properties of construction elements have gained a great deal of importance in building design over the last few years. Many investigations have shown that this is the key factor to improve energy efficiency and obtain optimal comfort conditions in buildings. However, experimental tests are expensive and time consuming and the development of new products requires shorter analysis times. In this sense, the goal of this research is to analyze the thermal behavior of a wall made up of lightweight concrete blocks covered with layers of insulating materials in steady- and transient-state conditions. For this, numerical and experimental studies were done, taking outdoor temperature and relative humidity as a function of time into account. Furthermore, multi-criteria optimization based on the design of the experimental methodology is used to minimize errors in thermal material properties and to understand the main parameters that influence the numerical simulation of thermal inertia. Numerical Finite Element Models (FEM) will take conduction, convection and radiation phenomena in the recesses of lightweight concrete blocks into account, as well as the film conditions established in the UNE-EN ISO 6946 standard. Finally, the numerical ISO-13786 standard and the experimental results are compared in terms of wall thermal transmittance, thermal flux, and temperature evolution, as well as the dynamic thermal inertia parameters, showing a good agreement in some cases, allowing builders, architects, and engineers to develop new construction elements in a short time with the new proposed methodology.


Author(s):  
M.M. Penkov ◽  
A.M. Dzitoev ◽  
E.V. Lapovok ◽  
S.I. Khankov

Author(s):  
H. B. Chi ◽  
M. F. N. Tajuddin ◽  
N. H. Ghazali ◽  
A. Azmi ◽  
M. U. Maaz

<span>This paper presents a low-cost PV current-voltage or <em>I-V</em> curve tracer that has the Internet of Things (IoT) capability. Single ended primary inductance converter (SEPIC) is used to develop the <em>I-V</em> tracer, which is able to cope with rapidly changing irradiation conditions. The <em>I-V</em> tracer control software also has the ability to automatically adapt to the varying irradiation conditions. The performance of the <em>I-V</em> curve tracer is evaluated and verified using simulation and experimental tests.</span>


Author(s):  
Joel Guidez ◽  
Janos Bodi ◽  
Konstantin Mikityuk ◽  
Enrico Girardi ◽  
Bernard Carluec

Abstract Following up the previous CP-ESFR project, the ESFR-SMART project considers the safety objectives envisaged for Generation-IV reactors, taking into account the lessons learned from the Fukushima accident, in order to increase the safety level of the European Sodium Fast Reactor (ESFR). In accordance with these objectives, guidelines have been defined to drive the ESFR-SMART developments, mainly simplifying the design and using all the positive features of Sodium Fast Reactors (SFR), such as low coolant pressure, efficiency of natural convection, possibility of decay heat removal (DHR) by atmospheric air, high thermal inertia and long grace period before a human intervention is needed. In this paper, a set of new ambitious safety measures is introduced for further evaluation within the project. The proposed set aims at consistency with the main lines of safety evolutions since the Fukushima accident, but it does not yet constitute the final comprehensive safety analysis. The paper gives a first review of the new propositions to enhance the ESFR safety, leading to a simplified reactor, forgiving and including a lot of passivity. This first version is supported by the various project tasks in order to assess the relevance of the whole design in comparison to the final safety objectives.


Author(s):  
Fouad Aytouna ◽  
Mohamed Aghoutane ◽  
Naima Amar Touhami ◽  
Mohamed Latrach

This chapter will treat firstly a summary of the filters synthesis by using Butterworth and chebyshev techniques. After that, a second part will be devoted to the design of planar filters using different techniques; this section will present some examples in bibliography. The aim of this part is to understand the different methods and steps followed to design planar filters, in the same time to discover and to define the different parameters which characterize a filter structure. Therefore, we have chosen some new research studies on low pass filers. The last part will present our contribution in designing planar filter. The first filter structure is a dual bandpass microstrip filter operating for DCS and Wimax applications, this section will introduce the different steps followed to achieve such filter. The second circuit is a novel design low cost microstrip lowpass filter with a cutoff frequency of 2.3 GHz. At the end, we will present a transformation of the microstrip filter to a CPW lowpass filter making it easy for integration with passive and active microwave components.


Sign in / Sign up

Export Citation Format

Share Document