scholarly journals Desiccant-Assisted Air Conditioning System Relying on Solar and Geothermal Energy during Summer and Winter

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3175 ◽  
Author(s):  
Peter Niemann ◽  
Finn Richter ◽  
Arne Speerforck ◽  
Gerhard Schmitz

At Hamburg University of Technology the combination of an open cycle desiccant-assisted air conditioning system and a geothermal system is investigated in the framework of different research projects for several years. The objective of this study is to investigate the energy efficiency of the overall system and to evaluate the geothermal system during summer and winter mode, based on data measured for a temperate climate region. Monitoring results of the performance for dehumidification and remoistening of supply air are presented. Furthermore, the investigated system is compared to reference air conditioning processes. During summer mode, an average dehumidification efficiency of 1.15 is achieved. The electrical energy savings compared to a conventional reference system sum up to 50% for the investigated cooling period. System operation during winter shows an average moisture recovery efficiency of 0.75. The electrical energy demand for air humidification is reduced by 50% compared to a system with electric isothermal air humidification. The geothermal system is operated efficiently throughout the year for cooling and heating application. Besides the energetic system evaluation, measured data regarding the soil temperature and thermal comfort are presented.

2018 ◽  
Vol 156 ◽  
pp. 03040 ◽  
Author(s):  
Juwari Purwo Sutikno ◽  
Serlya Aldina ◽  
Novita Sari ◽  
Renanto Handogo

The purposes of this research are to do a system simulation of air conditioning utilizing solar energy with single effect absorption refrigeration method, analyze the coefficient of performance (COP) for each absorbent-refrigerant variable and compare the effectivity of every absorbent-refrigerant variable used. COP is a constant that denotes the effeciency of a refrigeration system, that is ratio of work or useful output to the amount of work or energy input. The higher the number of COP, the more efficient the system is. Absorbent-refrigerant (working fluids) variables used in this research depend on its chemical and thermodynamics properties. Steps in this research are including data collection and tabulation from literature and do a simulation of air conditioning system both commercial air conditioning system (using electrical energy) and solar energy air conditioning system with Aspen Plus software. Next, run the simulation for each working fluid variables used and calculate the COP for each variable. Subsequently, analyze and compare the effectivity of all variables used from COP value and economical point of view with commercial air conditioning system. From the result of the simulation, can be concluded that solar air conditioning can achieve 98,85 % of energy savings than commercial air conditioning. Furthermore, from the calculation of COP, the highest COP value is achieved by solar conditioning system with LiNO3-NH3 as working fluid where 55% of the composition is the refrigerant and 45% of absorbent.


2012 ◽  
Vol 16 (3) ◽  
pp. 131
Author(s):  
Didik Ariwibowo

Didik Ariwibowo, in this paper explain that energy audit activities conducted through several phases, namely: the initial audit, detailed audit, analysis of energy savings opportunities, and the proposed energy savings. Total energy consumed consists of electrical energy, fuel, and materials in this case is water. Electrical energy consumption data obtained from payment of electricity accounts for a year while consumption of fuel and water obtained from the payment of material procurement. From the calculation data, IKE hotels accounted for 420.867 kWh/m2.tahun, while the IKE standards for the hotel is 300 kWh/m2.tahun. Thus, IKE hotel included categorized wasteful in energy usage. The largest energy consumption on electric energy consumption. Largest electric energy consumption is on the air conditioning (AC-air conditioning) that is equal to 71.3%, and lighting and electrical equipment at 27.28%, and hot water supply system by 4.44%. Electrical energy consumption in AC looks very big. Ministry of Energy and Mineral Resources of the statutes, the profile of energy use by air conditioning at the hotel by 48.5%. With these considerations in the AC target for audit detail as the next phase of activity. The results of a detailed audit analysis to find an air conditioning system energy savings opportunities in pumping systems. Recommendations on these savings is the integration of automation on the pumping system and fan coil units (FCU). The principle of energy conservation in the pumping system is by installing variable speed drives (VSD) pump drive motor to adjust speed according to load on the FCU. Load variations FCU provide input on the VSD pumps to match. Adaptation is predicted pump can save electricity consumption up to 65.7%. Keywords: energy audit, IKE, AC


2019 ◽  
Vol 111 ◽  
pp. 04042
Author(s):  
Nicolás Ablanque ◽  
Santiago Torras ◽  
Carles Oliet ◽  
Joaquim Rigola ◽  
Carlos-David Pérez-Segarra

The simulation of HVAC systems is a powerful tool to improve the energy efficiency in buildings. The modelling of such systems faces several obstacles due to both the physical phenomenology present and the numerical resolution difficulties. The present work is an attempt to develop a robust, fast, and accurate model for HVAC systems that can interact with the other relevant systems involved in buildings thermal management. The whole system model has been developed in the form of libraries under the Modelica language to exploit its advantageous characteristics: object-oriented programming, equationbased modelling, and handling of multi-physics. The global resolution is carried out dynamically so that not only steady-state predictions can be conducted but also control strategies can be studied over meaningful periods of time. This latter aspect is crucial for optimizing energy savings. The libraries include models for all the system individual components such as pumps, compressors or heat exchangers (operating with twophase flows and/or moist air) and also models assemblies to account for vapour compression units and liquid circuits. An illustrative example of an indirect air conditioning system is detailed in the present work in order to highlight the model potential.


2018 ◽  
Author(s):  
Hamad H. Almutairi ◽  
Abdulrahman Almutairi ◽  
Jaber H. Almutairi

Buildings account for significant energy consumption worldwide particularly in regions where energy patterns influenced primarily by weather. Air conditioning system became an essential evaluation factor during building design and construction. The level of curiosity about air conditioning system efficiency in terms of energy usage is increasing quickly. In Kuwait; which is a hot climate country; air conditioners account for 70% of total electrical power. Electricity in Kuwait is produced entirely by the non-renewable energy resources. This work aims to assess the potential electrical savings that could be acquired by reducing building’s façade area towards East-West directional orientation in Kuwait. For this purpose, a detached building model with uniform geometry; was simulated by Energy Plus Thermal Simulation Engine through its interface with DesignBuilder software. Two cases were developed for the analysis; both have the same simulation inputs. The only difference was the orientation of the facades. The results show a reduction of about 900 kWh cooling annually if the largest facades were positioned towards north and south. The obtained saving in annual basis is attributed to about 420 kWh electrical power. Equivalent CO2 emissions associated with the saved electrical energy from power plants in Kuwait were estimated. The resulted savings are promising for early decision making for prospective buildings to be built in future.


2011 ◽  
Vol 280 ◽  
pp. 71-75
Author(s):  
Zhong Chao Zhao ◽  
Dong Hui Zhang ◽  
Yu Ping Chen

In this paper, the operation mechanism of combined air-conditioning system with temperature and humidity decoupled treatment (CACSTHDT) was presented, and the energy saving potential and economics of CACSTHDT were primarily analyzed through compared with a traditional air-conditioning system. The results indicated that CACSTHDT could save up to 28.64% energy consumption in comparison with a traditional air-conditioning system. The operating cost in one summer only was 71.36% of that cost of traditional air-conditioning system.


2014 ◽  
Vol 699 ◽  
pp. 828-833 ◽  
Author(s):  
Sumeru ◽  
Markus ◽  
Farid Nasir Ani ◽  
Henry Nasution

Air conditioning system consumes approximately 50% of the total energy consumption of buildings. Split-type air conditioner is the most widely used in residential and commercial buildings. As a result, enhancement on the performance of the air conditioners will yield a significant energy savings. The use of ejector as an expansion device on the split-type air conditioners is one method to increase the system performance. Exergy analysis on a split-type air conditioner uses an ejector as an expansion device at room and outdoor temperatures of 24 °C and 34 °C, respectively, yielded the percentage of exergy reduction up to 40.6%. Also, the exergy losses on in the compressor had the highest impact on the performance improvement of the split-type air conditioner.


2016 ◽  
Vol 24 (02) ◽  
pp. 1650012 ◽  
Author(s):  
T. O. Ahmadu ◽  
C. O. Folayan ◽  
F. O. Anafi

In this study, a solar absorption air conditioning system has been modeled simulated and optimized for an office block covering a total floor area of 90[Formula: see text]m2using the TRNSYS 16 software. Meteorological data over a period of a typical year for Zaria in Nigeria where the office block is located was used in the simulation and optimization. The hourly cooling energy demand of the office block for the whole year was simulated using the TRNSYS sub program TRNbuild. The peak cooling energy demand was used to size the components of the solar absorption air conditioning system. Based on the initial sizes, a TRNSYS model of the air conditioning system was developed. The simulation and optimization process was done by employing a monthly average data approach in which the TRNSYS software was combined with Microsoft excel. The simulation was done on an hourly time step, optimization was done by studying effect of varying system component sizes on performance indices: coefficient of performance (COP), solar coefficient of performance (SCOP) and solar fraction (SF). Results indicate that the system is capable of attaining an average annual SF of 0.79 in the given location.


Author(s):  
Rambod Rayegan ◽  
Yong X. Tao

The objective of this paper is to model and analyze the solar Organic Rankine Cycle (ORC) engine for a geothermal air-conditioned net zero-energy building (NZEB) in a hot and humid climate. In the authors’ previous work, 11 fluids have been suggested to be employed in solar ORCs that use low or medium temperature solar collectors. In this paper, the system requirements needed to maintain the electricity demand of a commercial building have been compared for the 11 suggested fluids. The solar collector loop, building, and geothermal air conditioning system are modeled using TRNSYS with the required input for the ORC system derived from the previous study. The commercial building is located in Pensacola of Florida and is served by grid power. The building has been equipped with two geothermal heat pump units and a vertical closed loop system. The performance of the geothermal system has been monitored for 3 weeks. Monitoring data and available electricity bills of the building have been employed to calibrate the building and geothermal air conditioning system simulation. Simulation has been repeated for Miami and Houston in order to evaluate the effect of the different solar radiations on the system requirements.


2011 ◽  
Vol 19 (02) ◽  
pp. 131-140
Author(s):  
QUBO LI ◽  
DEMISS A. AMIBE ◽  
NORBERT MÜLLER

An air conditioning system using water as refrigerant (R718) that compresses water vapor with multistage stage variable speed axial compressor with intercooling between stages by water injection is considered. Four stage compression with flash intercooling resulted in 50% improvement of coefficient of performance (COP) at full load compared to conventional refrigerants like R134a. The energy efficiency of an air conditioning unit is specified by seasonal energy efficiency ratio (SEER). SEER is defined as the ratio of cooling output of an air conditioner measured and electrical energy consumption as per AHRI 210/240 during cooling season. The SEER is computed after determining the evaporator cooling capacity and the electrical energy demand of the compressor at each bin temperature using assumed compressor isentropic efficiency, mechanical efficiency and electrical efficiency and multiplying by the weight of each bin temperature to determine the total for the cooling season. As a result of multistage compression, best part load performance of water as a refrigerant and operation of compressor near design point at part load due to variable speed drive, 50%–60% improvement in SEER is obtained compared to the best available in the market using conventional refrigerants such as R134a with single stage compression.


2014 ◽  
Vol 672-674 ◽  
pp. 54-60 ◽  
Author(s):  
Ting Xiang Jin ◽  
Xiao Feng Xu

As coal, oil, natural gas and other non-renewable energy consumption and increasing energy demand, the utilization of solar energy as a new energy is greatly enhanced. In this work, a grid connected photovoltaic solar air conditioning system is designed, mainly comprised of solar panel, controller, inverter, room air conditioner and other parts. Air conditioning systems rely mainly on solar photovoltaic power; achieve the effect of energy conservation and environmental protection. The experimental result indicates that the system can achieve stable operation and the utilization of solar energy driving air conditioning system to save electricity. This air conditioning system is compared with the ordinary air conditioning system, SEER can increase 10.6 ~ 29.4%, HSPF can increase 6.25 ~ 18.5%.


Sign in / Sign up

Export Citation Format

Share Document