Space vector modulation with reduced common mode voltage for six-phase drives

Author(s):  
Mohammad Jafar Zandzadeh ◽  
Mohsen Saniei ◽  
Reza Kianinezhad

Purpose This paper aims to present a modified space vector pulse width modulation (SVPWM) technique for six-phase induction motor drive based on common-mode voltage (CMV) and current losses which are two important issues affecting drive system behavior and quality. Design/methodology/approach It is shown that the presence of z-component currents and the presence of CMV in six-phase drive system are two major limiting factors in space vector selection. The behavior of several space vector selections in a two-level inverter considering minimum CMV and z-components is investigated. Then, the space vectors in a three-level inverter is analyzed and tried to explore an SVM technique with better behavior. Findings The analyses show that all the problems cannot be solved in a six-phase drive system with two-level inverter despite having 64 space vectors; this study tried to overcome the limitations by exploring space vectors in a three-level inverter. Originality/value The proposed pulse width modulation (PWM) strategy leads to minimum current distortion and undesired current components with zero CMV and modest torque ripple.

2021 ◽  
Vol 54 (2) ◽  
pp. 345-354
Author(s):  
Fayçal Mehedi ◽  
Habib Benbouhenni ◽  
Lazhari Nezli ◽  
Djamel Boudana

In this work, the direct torque control (DTC) is applied to the five-phase permanent magnet synchronous motor (FP-PMSM). The DTC method based on classical space vector pulse width modulation (SVPWM) is a common solution used to overcome traditional problems; such as stator flux ripple, electromagnetic torque ripple and gives more total harmonic distortion (THD) of the stator current. The actual paper is based on improving the performance of DTC-SVPWM by using the feedforward neural networks (FNNs) instead of the proportional-integral (PI) regulators and hysteresis comparators (HCs) of the conventional SVPWM strategy. This algorithm can solve the traditional PI regulators and HCs problems which are represented in responses dynamic and reduce the torque ripple, flux ripple, and the THD of stator current of FP-PMSM drives. The proposed strategy was tested in different tests with simulation using Matlab software.


Author(s):  
Aleksey Vyacheslavovich Udovichenko ◽  
Sergey Viktorovich Brovanov ◽  
Evgeny Valerievich Grishanov ◽  
Svetlana Mikhailovna Stennikova

Power generation systems based on renewable energy sources are finding ever-widening applications and many researchers work on this problem. Many papers address the problem of transformerless structures, but few of them are aimed at conducting research on structures with multilevel converter topologies. In this paper a grid-tied transformerless PV-generation system based on a multilevel converter is discussed. There are common-mode leakage currents which act as a parasitic factor. It is also known that common-mode voltage is the main cause of the common-mode leakage current in grid-tied PV-generation systems. This paper considers the space vector pulse-width modulation (PWM) technique which is used to suppress or reduce common-mode leakage current. The proposed engineering solutions for a generation system based on the multilevel converter controlled with a pulse-width modulation technique are verified by experiment.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 76 ◽  
Author(s):  
Duc-Tri Do ◽  
Minh-Khai Nguyen ◽  
Van-Thuyen Ngo ◽  
Thanh-Hai Quach ◽  
Vinh-Thanh Tran

In this paper, the effect of common-mode voltage generated in the three-level quasi-switched boost T-type inverter is minimized by applying the proposed space-vector modulation technique, which uses only medium vectors and zero vector to synthesize the reference vector. The switching sequence is selected smoothly for inserting the shoot-through state for the inverter branch. The shoot-through vector is added within the zero vector in order to not affect the active vectors as well as the output voltage. In addition, the shoot-through control signal of active switches of the impedance network is generated to ensure that its phase is shifted 90 degrees compared to shoot through the signal of the inverter leg, which provides an improvement in reducing the inductor current ripple and enhancing the voltage gain. The effectiveness of the proposed method is verified through simulation and experimental results. In addition, the superiority of the proposed scheme is demonstrated by comparing it to the conventional pulse-width modulation technique.


2014 ◽  
Vol 672-674 ◽  
pp. 1219-1223 ◽  
Author(s):  
Zhi Ling Liao ◽  
Xiao Lei Cai ◽  
Hong Ping Jia ◽  
Wei Dong Shi

Traditional square current driving method has deficiencies in muting and efficiency when controlling the brushless DC motor. This paper presents a method of space vector pulse width modulation for BLDCM, which is in five-segment type. A mathematical model of BLDCM, which is in d-q coordinate system, was established. Then, the experimental platform was constructed with the STM32F103 for BLDCM of electric vehicle. And the experiment results verify the properties of little torque ripple, smooth operation and low switching losses. Besides, the system dynamic and static performance is greatly improved, and has strong robustness. The method proposed overcomes the shortcomings of square current driving method in control efficiency and motor noise.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3884
Author(s):  
Jian Zheng ◽  
Mingcheng Lyu ◽  
Shengqing Li ◽  
Qiwu Luo ◽  
Keyuan Huang

Aiming at the problem of large magnitude and high frequency of common-mode voltage (CMV) when space vector pulse width modulation (SVPWM) is used in a three-phase motor fed by a two-level voltage source inverter, a common-mode reduction SVPWM (CMRSVPWM) is studied. In this method, six new sectors are obtained by rotating six sectors of conventional SVPWM by 30°. In odd-numbered sectors, only three non-zero vectors with odd subscripts are used for synthesis, while in even-numbered sectors, only three non-zero vectors with even subscripts are used for synthesis. The actuation durations of three non-zero vectors in each switching period in each sector are given. Simulation and experimental results show that, compared with the conventional SVPWM, the CMV magnitude of CMRSVPWM is reduced by 66.67% and the CMV frequency of CMRSVPWM is reduced from the original switching frequency to the triple fundamental frequency. At the same time, the current, torque and speed of the motor are still good.


Sign in / Sign up

Export Citation Format

Share Document