scholarly journals Permeability Evolution at Various Pressure Gradients in Natural Gas Hydrate Reservoir at the Shenhu Area in the South China Sea

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3688 ◽  
Author(s):  
Lu ◽  
Xia ◽  
Sun ◽  
Bian ◽  
Qiu ◽  
...  

The sediment of the hydrate reservoir in the Shenhu Area is mainly clayey silt. Its characteristic small particles and poor cementation challenge the quantification of the reservoir permeability during gas production. An accurate description of the seepage mechanism of the clayey-silt reservoir is the basis, and also a difficulty, of effective development of gas in the South China Sea. In this study, four sets of water seepage experiments under different pressure gradients are carried out using the clayey-silt reservoir sediments, in which the fourth sample was subjected to computed tomographic (CT) scans. The experimental results shows that the clayey-silt reservoir has a compression of the pore structure and decreasing permeability with the increasing pressure gradient. CT images are used to show the reduction of pore spaces for fluid flow. When the pressure gradient is less than 3 MPa per meter, the pore structure of the reservoir has minor changes. When the pressure gradient is greater than this value, the pore structure of the reservoir will be quickly compressed. This leads to a rapid decrease in permeability, and the process of permeability reduction is irreversible. The decrease of permeability can be predicted directly by establishing a power law model with the change of porosity. Our experimental results preliminarily reveal the dynamic evolution law of pore structure and permeability of clayey-silt reservoir in the process of gas hydrate exploitation via depressurization. The permeability evolution law at various pressure gradients provides a scientific and reasonable basis of a productivity control system for clayey-silt gas hydrate in depressurized gas production.

Energy ◽  
2020 ◽  
Vol 204 ◽  
pp. 117955 ◽  
Author(s):  
Li Huang ◽  
Zhenyuan Yin ◽  
Yizhao Wan ◽  
Jianye Sun ◽  
Nengyou Wu ◽  
...  

SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 563-578 ◽  
Author(s):  
Yilong Yuan ◽  
Tianfu Xu ◽  
Yingli Xia ◽  
Xin Xin

Summary Marine-gas-hydrate-drilling exploration at the Eastern Nankai Trough of Japan revealed the variable distribution of hydrate accumulations, which are composed of alternating beds of sand, silt, and clay in sediments, with vertically varying porosity, permeability, and hydrate saturation. The main purposes of this work are to evaluate gas productivity and identify the multiphase-flow behavior from the sedimentary-complex hydrate reservoir by depressurization through a conventional vertical well. We first established a history-matching model by incorporating the available geological data at the offshore-production test site in the Eastern Nankai Trough. The reservoir model was validated by matching the fluid-flow rates at a production well and temperature changes at a monitoring well during a field test. The modeling results indicate that the hydrate-dissociation zone is strongly affected by the reservoir heterogeneity and shows a unique dissociation front. The gas-production rate is expected to increase with time and reach the considerable value of 3.6 × 104 std m3/d as a result of the significant expansion of the dissociation zone. The numerical model, using a simplified description of porosity, permeability, and hydrate saturation, leads to significant underestimation of gas productivity from the sedimentary-complex hydrate reservoir. The results also suggest that the interbedded-hydrate-occurrence systems might be a better candidate for methane (CH4) gas extraction than the massive hydrate reservoirs.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Xiaolong Ma ◽  
Youhong Sun ◽  
Wei Guo ◽  
Rui Jia ◽  
Bing Li

Gas hydrates in the Shenhu area are mainly hosted in clayey silt sediments, which have the relatively high irreducible fluid saturation and gas entry pressure. And then, they will have an impact on gas production from hydrate-bearing clayey silt sediments, which was evaluated by the numerical simulations of SH2 site in Shenhu area in this paper. The results showed that, with the increase in irreducible water saturation and irreducible gas saturation, the amount of water production and gas production was obviously reduced. When the irreducible water saturation increased from 0.10 to 0.50, the cumulative CH4 production volume decreased from 1668799 m3 to 1536262 m3, and the cumulative water production volume dropped from 620304 m3 to 564797 m3, respectively. When the irreducible gas saturation increased from 0.01 to 0.05, the cumulative CH4 production volume dropped from 1812522 m3 to 1622121 m3, and the cumulative water production volume dropped from 672088 m3 to 600617 m3, respectively. In addition, the capillary pressure increased obviously with the increase in gas entry pressure, but the effect on gas production was small and the effect on water production could be negligible. In conclusion, irreducible water and gas saturation had an important effect on the gas production from gas hydrate, whereas the effects of gas entry pressure could be ignored.


2009 ◽  
Vol 12 (04) ◽  
pp. 595-609 ◽  
Author(s):  
Shahab Gerami ◽  
Mehran Pooladi-Darvish

Summary Development of natural gas hydrates as an energy resource has gained significant interest during the past decade. Hydrate reservoirs may be found in different geologic settings including deep ocean sediments and arctic areas. Some reservoirs include a free-gas zone beneath the hydrate and such a situation is referred to as a hydrate-capped gas reservoir. Gas production from such a reservoir could result in pressure reduction in the hydrate cap and endothermic decomposition of hydrates. Well testing in conventional reservoirs is used for estimation of reservoir and near-wellbore properties. Drawdown testing in a hydrate-capped gas reservoir needs to account for the effect of gas from decomposing hydrates. This paper presents a 2D (r,z) mathematical model for a constant-rate drawdown test performed in a well completed in the free-gas zone of a hydrate-capped gas reservoir during the earlytime production. Using energy and material balance equations, the effect of endothermic hydrate decomposition appears as an increased compressibility in the resulting governing equation. The solution for the dimensionless wellbore pressure is derived using Laplace and finite Fourier cosine transforms. The solution to the analytical model was compared with a numerical hydrate reservoir simulator across some range of hydrate reservoir parameters. The use of this solution for determination of reservoir properties is demonstrated using a synthetic example. Furthermore, the solution may be used to quantify the contribution of hydrate decomposition on production performance. Introduction In recent years, demands for energy have stimulated the development of unconventional gas resources, which are available in enormous quantities around the world. Gas hydrate as an unconventional gas resource may be found in two geologic settings (Sloan 1991):on land in permafrost regions, andin the ocean sediments of continental margins. During the last decade, extensive efforts consisting of detection of the hydrate-bearing areas, drilling, logging, coring of the intervals, production pilot-testing, and mathematical modeling of hydrate reservoirs have been pursued to evaluate the potential of gas production from these gas-hydrate resources.


2008 ◽  
Vol 51 (8) ◽  
pp. 1272-1282 ◽  
Author(s):  
YuHu Bai ◽  
QingPing Li ◽  
XiangFang Li ◽  
Yan Du

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Hang Bian ◽  
Yuxuan Xia ◽  
Cheng Lu ◽  
Xuwen Qin ◽  
Qingbang Meng ◽  
...  

The gas-water two-phase seepage process is complex during the depressurization process of natural gas hydrate in a clayey silt reservoir in the South China Sea, the transport mechanism of which has not been clarified as it is affected by the pore structure. In this study, we select six clayey silt samples formed after the dissociation of natural gas hydrate in the South China Sea, employing CT scanning technology to observe the pore structure of clayey silt porous media directly. The original CT scanning images are further processed to get the binarized images of the samples, which can be used for simulation of the porosity and absolute permeability. Based on the fractal geometry theory, pore structures of the samples are quantitatively characterized from the aspect of pore distribution, heterogeneity, and anisotropy (represented by three main fractal geometric parameters: fractal dimension, lacunarity, and succolarity, respectively). As a comparison, the binarized CT images of two conventional sandstone cores are simulated with the same parameters. The results show that the correlation between porosity and permeability of the hydrate samples is poor, while there is a strong correlation among the succolarity and the permeability. Fractal dimension (represents complexity) of clayey silt samples is higher compared with conventional sandstone cores. Lacunarity explains the difference in permeability among samples from the perspective of pore throat diameter and connectivity. Succolarity indicates the extent to which the fluid in the pore is permeable, which can be used to characterize the anisotropy of pore structures. Therefore, these three fractal parameters clarify the relationship between the microstructure and macroscopic physical properties of clayey silt porous media.


Sign in / Sign up

Export Citation Format

Share Document