scholarly journals 3D Dynamic Simulation of Heat Conduction through a Building Corner Using a BEM Model in the Frequency Domain

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4595
Author(s):  
Nuno Simões ◽  
Joana Prata ◽  
António Tadeu

This paper sets out a three-dimensional (3D) boundary element method (BEM) formulation in the frequency domain to simulate heat transfer through a point thermal bridge (PTB) at a corner in a building envelope. The main purpose was to quantify the dynamic effect of a geometrical PTB in terms of distribution of temperatures and heat fluxes, which is useful for evaluating moisture condensation risk. The numerical model is first validated experimentally using a hot box to measure the dynamic heat behavior of a 3D timber building corner. The proposed model is then used to study the dynamic thermal bridging effect in the vicinity of a 3D concrete corner. Given the importance of the risk of condensation, this study looks at the influence of an insulating material and its position on the temperature and heat flux distribution through the PTB under steady state and dynamic conditions.

2020 ◽  
Vol 172 ◽  
pp. 08001
Author(s):  
Paul Klõšeiko ◽  
Reimo Piir ◽  
Marti Jeltsov ◽  
Targo Kalamees

The purpose of this work was to quantify the thermal bridge effect of vertical diagonal tie connectors in precast concrete sandwich panels (PCSPs). Special interest was in cases where the use of rigid insulation (e.g. PIR) would leave air gaps between insulation boards and diagonal ties, thus intensifying the thermal bridge. A climate chamber experiment using 5 different joint types was performed to gather reference data for CFD model validation. In the experiment, natural convection was observed in joints where no additional insulation was used, i.e. in air cavities. Significantly larger heat fluxes were measured in these cavities compared to insulated joints. The thermal bridging effect was evaluated for a typical PCSP (thermal transmittance without thermal bridges U = 0.11 W/(m²·K)) using CFD software taking into account 3D heat conduction and convection. Simulation results indicate that diagonal ties without adjacent air cavities increased the average thermal transmittance (U-value) of the envelope by 8%, diagonal ties with a 6 mm air cavity – 19...33% and diagonal ties with a 10 mm air cavity – 45...56%. In conclusion, it was found that the joints in insulation caused by diagonal ties affect the overall thermal performance of the building envelope significantly when efforts are not made to fill the air cavities around the connectors.


2020 ◽  
Vol 172 ◽  
pp. 08005
Author(s):  
Jaanus Hallik ◽  
Targo Kalamees

A well-insulated, airtight and thermal bridge free building envelope is a key factor for nearly zero energy buildings (nZEB). However, increased insulation thickness and minimized air leakages increase the effect of thermal bridges on overall energy efficiency of the nZEBs. Although several more prominent linear thermal bridges are accounted for in the practice the three-dimensional heat flow through vast array of fixation elements, mounting brackets and other point thermal bridges are usually neglected due to time-consuming model preparation routine, lack of input data as well as high number of different thermal bridges that have to be assessed for a single project. In this study a new method was proposed for predicting three-dimensional heat flow and the point thermal transmittance of thermal bridges caused by full or partial penetration of the building envelope with metal elements with uniform geometry in third dimension based on multiple two-dimensional numerical heat flow calculations. A new parameter (equivalent length of thermal bridge) was defined which incorporates the effect of additional thermal transmittance in third dimension when multiplied by the difference of two thermal coupling coefficients derived for two-dimensional cross section. Multiple linear regression model was fitted on database with 102 cases and verified with separate case of window to wall connection incorporating metal penetration at fixation points. The proposed methodology can be useful in general practice where the design team lacks the skills or software tools for conducting detailed numerical analysis in three dimensions.


Author(s):  
Jiehai Zhang ◽  
Arun Muley ◽  
Joseph B. Borghese ◽  
Raj M. Manglik

Enhanced heat transfer characteristics of low Reynolds number airflows in three-dimensional sinusoidal wavy plate-fin channels are investigated. For the computational simulation, steady state, constant property, periodically developed, laminar forced convection is considered with the channel surface at the uniform heat flux condition; the wavy-fin is modeled by its two asymptotic limits of 100% and zero fin efficiency. The governing equations are solved numerically using finite-volume techniques for a non-orthogonal, non-staggered grid. Computational results for velocity and temperature distribution, isothermal Fanning friction factor f and Colburn factor j are presented for airflow rates in the range of 10 ≤ Re ≤ 1500. The numerical results are further compared with experimental data, with excellent agreement, for two different wavy-fin geometries. The influence of fin density on the flow behavior and the enhanced convection heat transfer are highlighted. Depending on the flow rate, a complex flow structure is observed, which is characterized by the generation, spatial growth and dissipation of vortices in the trough region of the wavy channel. The thermal boundary layers on the fin surface are periodically disrupted, resulting in high local heat fluxes. The overall heat transfer performance is improved considerably, compared to the straight channel with the same cross-section, with a relatively smaller increase in the associated pressure drop penalty.


2021 ◽  
pp. 108128652110258
Author(s):  
Yi-Ying Feng ◽  
Xiao-Jun Yang ◽  
Jian-Gen Liu ◽  
Zhan-Qing Chen

The general fractional operator shows its great predominance in the construction of constitutive model owing to its agility in choosing the embedded parameters. A generalized fractional viscoelastic–plastic constitutive model with the sense of the k-Hilfer–Prabhakar ( k-H-P) fractional operator, which has the character recovering the known classical models from the proposed model, is established in this article. In order to describe the damage in the creep process, a time-varying elastic element [Formula: see text] is used in the proposed model with better representation of accelerated creep stage. According to the theory of the kinematics of deformation and the Laplace transform, the creep constitutive equation and the strain of the modified model are established and obtained. The validity and rationality of the proposed model are identified by fitting with the experimental data. Finally, the influences of the fractional derivative order [Formula: see text] and parameter k on the creep process are investigated through the sensitivity analyses with two- and three-dimensional plots.


2002 ◽  
Vol 124 (4) ◽  
pp. 953-957 ◽  
Author(s):  
D. Lornage ◽  
E. Chatelet ◽  
G. Jacquet-Richardet

Rotating parts of turbomachines are generally studied using different uncoupled approaches. For example, the dynamic behavior of shafts and wheels are considered independently and the influence of the surrounding fluid is often taken into account in an approximate way. These approaches, while often sufficiently accurate, are questionable when wheel-shaft coupling is observed or when fluid elements are strongly coupled with local structural deformations (leakage flow between wheel and casing, fluid bearings mounted on a thin-walled shaft, etc.). The approach proposed is a step toward a global model of shaft lines. The whole flexible wheel-shaft assembly and the influence of specific fluid film elements are considered in a fully three-dimensional model. In this paper, the proposed model is first presented and then applied to a simple disk-shaft assembly coupled with a fluid film clustered between the disk and a rigid casing. The finite element method is used together with a modal reduction for the structural analysis. As thin fluid films are considered, the Reynolds equation is solved using finite differences in order to obtain the pressure field. Data are transferred between structural and fluid meshes using a general method based on an interfacing grid concept. The equations governing the whole system are solved within a time-marching procedure. The results obtained show significant influence of specific three-dimensional features such as disk-shaft coupling and local disk deformations on global behavior.


2005 ◽  
Vol 74 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Reese E. Jones

A Greenwood and Williamson based model for interfacial friction is presented that incorporates the presliding transition phenomenon that can significantly affect small devices. This work builds on previous similar models by developing: an analytical estimate of the transition length in terms of material and surface parameters, a general recursion formula for the case of slip in one direction with multiple reversals and constant normal loading, and a numerical method for the general three-dimensional loading case. In addition, the proposed model is developed within a plasticity-like framework and is shown to have qualitative similarities with published experimental observations. A number of model problems illustrate the response of the proposed model to various loading conditions.


Author(s):  
Justin Lapp ◽  
Wojciech Lipiński

A transient heat transfer model is developed for a solar reactor prototype for H2O and CO2 splitting via two-step non-stoichiometric ceria cycling. Counter-rotating cylinders of reactive and inert materials cycling between high and low temperature zones permit continuous operation and heat recovery. To guide the reactor design a transient three-dimensional heat transfer model is developed based on transient energy conservation, accounting for conduction, convection, radiation, and chemical reactions. The model domain includes the rotating cylinders, a solar receiver cavity, and insulated reactor body. Radiative heat transfer is analyzed using a combination of the Monte Carlo method, Rosseland diffusion approximation, and the net radiation method. Quasi-steady state distributions of temperatures, heat fluxes, and the non-stoichiometric coefficient are reported. Ceria cycles between temperatures of 1708 K and 1376 K. A heat recovery effectiveness of 28% and solar-to-fuel efficiency of 5.2% are predicted for an unoptimized reactor design.


Sign in / Sign up

Export Citation Format

Share Document