scholarly journals Design and Implementation of a Blockchain-Based Energy Trading Platform for Electric Vehicles in Smart Campus Parking Lots

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4814 ◽  
Author(s):  
Felipe Condon Silva ◽  
Mohamed A. Ahmed ◽  
José Manuel Martínez ◽  
Young-Chon Kim

This paper proposes a blockchain-based energy trading platform for electric vehicles in smart campus parking lots. Smart parking lots are smart places capable of supporting both parking and charging services for electric vehicles. The electric vehicle owner may want to charge energy at a low price and sell it during peak hours at a higher price. The proposed system architecture consists of two layers: the physical infrastructure layer and the cyber infrastructure layer. The physical infrastructure layer represents all of the physical components located in the campus distribution power system, such as electric vehicles charging stations, transformers, and electric feeders, while the cyber infrastructure layer supports the operation of the physical infrastructure layer and enables selling/buying energy among participants. Blockchain technology is a promising candidate to facilitate auditability and traceability of energy transactions among participants. A real case of a parking lot with a realistic parking pattern in a university campus is considered. The system consists of a university control center and various parking lot local controllers (PLLCs). The PLLC broadcasts the electricity demand and the grid price, and each electric vehicle owner decides whether to charge/discharge based on their benefits. The proposed system is implemented on Hyperledger Fabric. Participants, assets, transactions, and smart contracts are defined and discussed. Two scenarios are considered. The first scenario represents energy trading between electric vehicles as sellers and the PLLC as a buyer, while the second scenario involves energy trading between electric vehicles as buyers and the PLLC as a seller. The proposed platform provides profits for participants, as well as enables balancing for the university load demand locally.

2018 ◽  
Vol 8 (10) ◽  
pp. 1749 ◽  
Author(s):  
Mohamed Ahmed ◽  
Young-Chon Kim

Energy trading with electric vehicles provides opportunities to eliminate the high peak demand for electric vehicle charging while providing cost saving and profits for all participants. This work aims to design a framework for local energy trading with electric vehicles in smart parking lots where electric vehicles are able to exchange energy through buying and selling prices. The proposed architecture consists of four layers: the parking energy layer, data acquisition layer, communication network layer, and market layer. Electric vehicles are classified into three different types: seller electric vehicles (SEVs) with an excess of energy in the battery, buyer electric vehicles (BEVs) with lack of energy in the battery, and idle electric vehicles (IEVs). The parking lot control center (PLCC) plays a major role in collecting all available offer/demand information among parked electric vehicles. We propose a market mechanism based on the Knapsack Algorithm (KPA) to maximize the PLCC profit. Two cases are considered: electric vehicles as energy sellers and the PLCC as an energy buyer, and electric vehicles as energy buyers and the PLCC as an energy seller. A realistic parking pattern of a parking lot on a university campus is considered as a case study. Different scenarios are investigated with respect to the number of electric vehicles and amount of energy trading. The proposed market mechanism outperforms the conventional scheme in view of costs and profits.


2021 ◽  
Author(s):  
Nasser Al-Saif ◽  
Raja Wasim Ahmad ◽  
Khaled Salah ◽  
Ibrar Yaqoob ◽  
Raja Jayaraman ◽  
...  

Today's technologies, techniques, and systems leveraged for managing energy trading operations in electric vehicles fall short in providing operational transparency, immutability, fault tolerance, traceability, and trusted data provenance features. They are centralized and vulnerable to the single point of failure problem, and less trustworthy as they are prone to the data modifications and deletion by adversaries. In this paper, we present the potential advantages of blockchain technology to manage energy trading operations between electric vehicles as it can offer data traceability, immutability, transparency, audit, security, and confidentiality in a fully decentralized manner. We identify and discuss the essential requirements for the successful implementation of blockchain technology to secure energy trading operations among electric vehicles. We present a detailed discussion on the potential opportunities offered by blockchain technology to secure the energy trading operations of electric vehicles. We discuss several blockchain-based research projects and case studies to highlight the practicability of blockchain technology in electric vehicles energy trading. Finally, we identify and discuss open challenges in fulfilling the requirements of electric vehicles energy trading applications.


2021 ◽  
Vol 13 (14) ◽  
pp. 7962
Author(s):  
Prince Waqas Khan ◽  
Yung-Cheol Byun

The world is moving rapidly from carbon-producing vehicles to green transportation systems. Electric vehicles (EV) are a big step towards a friendly mode of transport. With the constant rise in the number of electric vehicles, we need a widespread and seamless charging infrastructure that supports seamless charging and billing. Some users generate electricity using solar panels and charge their electric vehicles. In contrast, some use charging stations, and they pay for vehicle charging. This raises the question of trust and transparency. There are many countries where laws are not strictly enforced to prevent fraud in payment systems. One of the preeminent problems presently existing with any of the trading systems is the lack of transparency. The service provider can overcharge the customer. Blockchain is a modern-day solution that mitigates trust and privacy issues. We have proposed a peer-to-peer energy trading and charging payment system for electric vehicles based on blockchain technology. Users who have excess electricity which they can sell to the charging stations through smart contracts. Electric vehicle users can pay the charging bills through electronic wallets. We have developed the electric vehicle’s automatic-payment system using the open-source platform Hyperledger fabric. The proposed system will reduce human interaction and increase trust, transparency, and privacy among EV participants. We have analyzed the resource utilization and also performed average transaction latency and throughput evaluation. This system can be helpful for the policymakers of smart cities.


2021 ◽  
Vol 3 (2) ◽  
pp. 503-518
Author(s):  
Mahsa Z. Farahmand ◽  
Sara Javadi ◽  
Sayyed Muhammad Bagher Sadati ◽  
Hannu Laaksonen ◽  
Miadreza Shafie-khah

The performance of electric vehicles and their abilities to reduce fossil fuel consumption and air pollution on one hand and the use of photovoltaic (PV) panels in energy production, on the other hand, has encouraged parking lot operators (PLO) to participate in the energy market to gain more profit. However, there are several challenges such as different technologies of photovoltaic panels that make the problem complex in terms of installation cost, efficiency, available output power and dependency on environmental temperature. Therefore, the aim of this study is to maximize the PLO’s operational profit under the time of use energy pricing scheme by investigating the effects of different PV panel technologies on energy production and finding the best strategy for optimal operation of PVs and electric vehicle (EV) parking lots which is achieved by means of market and EV owners’ interaction. For the accurate investigation, four different PV panel technologies are considered in different seasons, with significant differences in daylight times, in Helsinki, Finland.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4742
Author(s):  
Thomas Steffen ◽  
Ashley Fly ◽  
William Mitchell

As the market share of electric vehicles increases, the intermittent load on the electricity grid due to charging will increase. This can be counteracted by Vehicle-to-Grid (V2G) which utilises dormant electric vehicles to feed power into the grid, generating income for the vehicle owner while relieving load across the grid. However, increased battery use through V2G can negatively affect battery health. In this work, a computational model of an electric vehicle with battery degradation is used to investigate the relationship of these effects. The analysis was conducted at the top level of detail, only considering the battery pack of the vehicle. The findings of this investigation show that the cost relating to battery degradation is smaller than the potential profit available from Vehicle-to-Grid over a three-year period. However, the benefit does not seem to be enough to justify the upfront investment requirement, and further financial incentives, such as net billing, may be required to make V2G economically viable. Future development within this field is vital for the success of the electric vehicle within the automotive markets, and for the transition to a renewable energy grid.


2019 ◽  
Vol 6 (2) ◽  
pp. 119
Author(s):  
Dahlia Nur ◽  
Yori Putra Pradana ◽  
Sahbuddin Abdul Kadir

— The number of motorized vehicles in Indonesia is increasing rapidly every year. Based on data from the Central Statistics Agency (BPS) in 2017, the number of motorized vehicles with Passenger Car vehicles reached 15,493,068 units. The number has increased compared to 2016 amounted to 14,580,666 units. The increase as the number of motorized vehicles has an impact of the availability of parking lots in a number of locations. Every driver who will park the vehicle wants to get the location / lot of the parking lot as soon as possible. However, the unavailability of parking capacity information in a parking area causes the user to go around first to get an unload parking space, if the parking lot is full, the user even has to go back out because he did not get a parking space. This study designed and built an ESP8266 microcontroller and PING ultrasonic sensor provided information about the availability of parking lots were still unoccupied in this monitoring system. It is hoped can improve the efficiency of parking users who are looking for vacant parking lots and make it easier for parking admins in parking monitoring management. The results showed that the monitoring system that was built could provide information about the availability of empty parking lots and integrated databases to store vehicle owner information based on parking cards. Parking lot information is included on the parking card given to users entering the parking area.


2018 ◽  
Author(s):  
Umanand L

This article presents a frank and open opinion on the challenges that will be faced in moving towards an electric mass transport ecosystem. World over there is considerable research activity on electric vehicles and hybrid electric vehicles. There seems to be a global effort to move from an ICE driven ecosystem to electric vehicle ecosystem. There is no simple means to make this transition. This road is filled with hurdles and challenges. This paper poses and discusses these challenges and possible solutions for enabling EVs.


Sign in / Sign up

Export Citation Format

Share Document