scholarly journals Comparison of Length Scale Parameterization Methodologies

Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 89
Author(s):  
Faruk Tuna ◽  
Ferhat Bingöl

Atmospheric stability has been studied for decades. There are several methodologies that evolved over the years. In this study, a special experimental meteorological mast that has been erected to a complex site has been used to calculate dimensionless Obukhov length ( ζ = z L ) , dimensionless momentum ( φ m ), and heat coefficients ( φ h ). The results are compared with the ones from average value approaches: Richardson number, flux-profile (F-P) relations, and wind shear exponent methods. The results show that the estimated ζ values, using the bulk Richardson number, get along well with the reference ζ within the neutral and stable regimes. F-P relations and wind shear exponent methods result in the best agreement for stable and neutral regimes. Nevertheless, average oriented methods are not reliable for the other regimes.

2018 ◽  
Vol 18 (10) ◽  
pp. 7329-7343 ◽  
Author(s):  
Jiming Li ◽  
Qiaoyi Lv ◽  
Bida Jian ◽  
Min Zhang ◽  
Chuanfeng Zhao ◽  
...  

Abstract. Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007–2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into account in the parameterization of decorrelation length scale L in order to further improve the calculation of the radiative budget and the prediction of climate change over the TP in the atmospheric models.


2018 ◽  
Vol 42 (6) ◽  
pp. 561-575 ◽  
Author(s):  
Lars Morten Bardal ◽  
Anja Eide Onstad ◽  
Lars Roar Sætran ◽  
John Amund Lund

Understanding the atmospheric stability conditions is important in order to obtain accurate estimates of the vertical wind speed profile. This work compares and evaluates common methods for estimation of atmospheric stability using standard meteorological mast observations. Atmospheric stability distributions from three different met-masts located at two coastal sites are calculated and compared. The atmospheric stability parameter, L is estimated using the bulk Richardson number, the surface-layer Richardson number, and calculated directly from eddy covariance flux measurements. The resulting distributions vary depending on which method is used. The atmospheric stability measurements from two masts located 3 km apart in similar terrain are compared directly. The highest correlation is found for the surface-layer Richardson number method. This method it also less sensitive to variation of measurement heights than the bulk Richardson number method.


2017 ◽  
Vol 68 (8) ◽  
pp. 1763-1767 ◽  
Author(s):  
Robert Szep ◽  
Reka Keresztes ◽  
Attila Korodi ◽  
Szende Tonk ◽  
Mihaela Emanuela Craciun

The atmospheric stability plays an important role in the accumulation of air pollutants and greatly influences their degradation, dispersion and deposition. These atmospheric qualities can be determined with various methods (Richardson number, Monin - Obukhov length, SRDT method) and the pollutant concentration increase demonstrates the atmospheric stability. In this study the cold periods were the most stable as well the PM10 and CO pollutants had high concentrations. Between these two pollutants the correlation is high because their sources are the same: transport and biomass burning. The study of hourly averages highlighted the importance of traffic intensity since the concentration variation follows the traffic intensity. An increase in the wind speed in the basin results in the pollutants concentrations decrease, the negative correlation with the temperature indicating the importance of the photochemical processes.


2006 ◽  
Vol 21 (5) ◽  
pp. 689-714 ◽  
Author(s):  
Matthew J. Bunkers ◽  
Jeffrey S. Johnson ◽  
Lee J. Czepyha ◽  
Jason M. Grzywacz ◽  
Brian A. Klimowski ◽  
...  

Abstract The local and larger-scale environments of 184 long-lived supercell events (containing one or more supercells with lifetimes ≥4 h; see Part I of this paper) are investigated and subsequently compared with those from 137 moderate-lived events (average supercell lifetime 2–4 h) and 119 short-lived events (average supercell lifetime ≤2 h) to better anticipate supercell longevity in the operational setting. Consistent with many previous studies, long-lived supercells occur in environments with much stronger 0–8-km bulk wind shear than what is observed for short-lived supercells; this strong shear leads to significant storm-relative winds in the mid- to upper levels for the longest-lived supercells. Additionally, the bulk Richardson number falls into a relatively narrow range for the longest-lived supercells—ranging mostly from 5 to 45. The mesoscale to synoptic-scale environment can also predispose a supercell to be long or short lived, somewhat independent of the local environment. For example, long-lived supercells may occur when supercells travel within a broad warm sector or else in close proximity to mesoscale or larger-scale boundaries (e.g., along or near a warm front, an old outflow boundary, or a moisture/buoyancy axis), even if the deep-layer shear is suboptimal. By way of contrast, strong atmospheric forcing can result in linear convection (and thus shorter-lived supercells) in a strongly sheared environment that would otherwise favor discrete, long-lived supercells.


2021 ◽  
Author(s):  
Elena Cantero ◽  
Javier Sanz ◽  
Fernando Borbón ◽  
Daniel Paredes ◽  
Almudena García

Abstract. Atmospheric stability has a significant effect on wind shear and turbulence intensity, and these variables, in turn, have a direct impact on wind power production and loads on wind turbines. It is therefore important to know how to characterize atmospheric stability in order to make better energy yield estimation in a wind farm. Based on research grade meteorological mast at Alaiz (CENER's Test Site in Navarre, Spain) named MP5, this work compares and evaluates different instrument set-ups and methodologies for stability characterization. The Obukhov parameter ζ = z/L, which can be measured locally with the use of a sonic anemometer, and bulk Richardson number have been studied. The methods are examined considering their theoretical background, implementation complexity, instrumentation requirements, and practical use in connection with wind energy applications. Bulk Richardson number, which is based on one height wind speed measurement and two temperature measurements, is sometimes calculated using values from any two temperature levels without taking into account that one of the measurements would be representative of surface conditions. With the data available in MP5, it will be shown how this approximation is not correct to obtain an adequate stability characterization.


Author(s):  
Thomas Foken ◽  
Michael Börngen

AbstractIt has been repeatedly assumed that Heinz Lettau found the Obukhov length in 1949 independently of Obukhov in 1946. However, it was not the characteristic length scale, the Obukhov length L, but the ratio of height and the Obukhov length (z/L), the Obukhov stability parameter, that he analyzed. Whether Lettau described the parameter z/L independently of Obukhov is investigated herein. Regardless of speculation about this, the significant contributions made by Lettau in the application of z/L merit this term being called the Obukhov–Lettau stability parameter in the future.


Geophysics ◽  
1977 ◽  
Vol 42 (3) ◽  
pp. 572-583 ◽  
Author(s):  
Tien‐Chang Lee

Shallow‐hole (<13 m) temperature measurements made at various depths and/or times may yield reliable values of geothermal gradient and thermal diffusivity if the groundwater table is shallow (a few meters) such that the effect of time‐dependent moisture content and physical properties is negligible. Two numerical methods based on nonlinear least‐squares curve fitting are derived to remove the effect of annual temperature wave at the ground surface. One method can provide information on the gradient and diffusivity as a function of depth while the other gives average value over the depth interval measured. Experiments were carried in six test holes cased with 2 cm OD PVC pipes in the Salton Sea geothermal field. A set of 5 to 7 thermistors was permanently buried inside the individual pipes with dry sand. Consistent gradient determinations have been obtained with both numerical methods from six monthly observations. By linearly extrapolating the depths to the 100°C and 200°C isotherms from the calculated gradients and mean ground temperatures, we have found good agreement with the nearby deep‐well data for four holes. Discrepancy is found for two holes, one of which is located near the field of [Formula: see text] mud volcanoes and the other near the volcanic Red Hill, reflecting complicated local hydrologic conditions.


Sign in / Sign up

Export Citation Format

Share Document