ON SHALLOW‐HOLE TEMPERATURE MEASUREMENTS—A TEST STUDY IN THE SALTON SEA GEOTHERMAL FIELD

Geophysics ◽  
1977 ◽  
Vol 42 (3) ◽  
pp. 572-583 ◽  
Author(s):  
Tien‐Chang Lee

Shallow‐hole (<13 m) temperature measurements made at various depths and/or times may yield reliable values of geothermal gradient and thermal diffusivity if the groundwater table is shallow (a few meters) such that the effect of time‐dependent moisture content and physical properties is negligible. Two numerical methods based on nonlinear least‐squares curve fitting are derived to remove the effect of annual temperature wave at the ground surface. One method can provide information on the gradient and diffusivity as a function of depth while the other gives average value over the depth interval measured. Experiments were carried in six test holes cased with 2 cm OD PVC pipes in the Salton Sea geothermal field. A set of 5 to 7 thermistors was permanently buried inside the individual pipes with dry sand. Consistent gradient determinations have been obtained with both numerical methods from six monthly observations. By linearly extrapolating the depths to the 100°C and 200°C isotherms from the calculated gradients and mean ground temperatures, we have found good agreement with the nearby deep‐well data for four holes. Discrepancy is found for two holes, one of which is located near the field of [Formula: see text] mud volcanoes and the other near the volcanic Red Hill, reflecting complicated local hydrologic conditions.

2000 ◽  
Vol 31 ◽  
pp. 287-294 ◽  
Author(s):  
Ketil Isaksen ◽  
Daniel Vonder Mühll ◽  
Hansueli Gubler ◽  
Thomas Kohl ◽  
Johan Ludvig Sollid

AbstractAnalyses of the geothermal gradient in permafrost areas constitute a key signal of the ground-surface temperature history. Permafrost temperatures in selected areas are particularly well suited to reconstructing past surface-temperature changes, mainly because there is no thermal disturbance due to circulating groundwater. One year of temperature data from an instrumented 102 m deep borehole in permafrost on Janssonhaugen, Svalbard, is presented. Ground thermal properties are calculated. The average value for the thermal conductivity is 1.85 ±0.05 W m–1 K–1 , and the average value for the thermal diffusivity is 1.1m2 s–1, which gives a phase speed for the annual wave of 5.65 × KT2 m d–1. The depth of zero annual amplitude is 18 m The permafrost thickness is estimated as approximately 220 m. Analysis of the temperatures reveals an increasing temperature gradient with depth. Using a heat-conduction inversion model, a palaeoclimatic reconstruction is presented, showing a warming of the surface temperature over the last 60–80 years. The temperature profile represents a regional signal on Svalbard, which shows an inflection associated with near-surface warming of 1.5 ± 0.5°C in the 20th century.


2018 ◽  
Vol 40 (3) ◽  
pp. 1162
Author(s):  
Ch. Kougoulis ◽  
A. Arvanitis ◽  
N. Kolios ◽  
S. Koutsinos ◽  
J. S. Kougoulis

The Sani-Afytos area in the Kassandra Peninsula (Chalkidiki) was the area of systematic geothermal exploration. Based on deep oil borehole data, the Paleogene, Neogene and Quaternary sediments show significant thickness reaching 3600 m and cover the metamorphosed Mesozoic, mainly carbonate, basement. The detailed water temperature investigation proved the presence of sub-thermal waters (20-28°C) at depths up to 300 m and the spatial distribution of the isothermal curves at depths of 150 and 200 m according to the main NW-SE and SE-NW tectonic structures of the area. Through the construction of geothermal exploration and production wells at depths of 422-583 m, thermal waters of 31.7-36°C were detected within the Upper Miocene sediments. The average value of the geothermal gradient was calculated to be 3-4°CI 100 m. One production well of 520 m depth provides waters of 34°C while its potential flow rate is approximately 50 m /h. The geothermal waters were classified in Na-HCOi and Na-CI types of waters with TD. S 0.89-2.03 g/l. With the aid of chemical geothermometers the deep temperature was estimated to be 80-100°C. In one exploration well, the presence of gas phase (77% v/v CH4, 21.8% v/v N2) was detected. The geothermal exploration resulted in the characterization of the area as the "geothermal field of Sani-Afytos" and in the prospective development using the geothermal fluids in the tourism and other activities.


During the last few years of his life Prof. Simon Newcomb was keenly interested in the problem of periodicities, and devised a new method for their investigation. This method is explained, and to some extent applied, in a paper entitled "A Search for Fluctuations in the Sun's Thermal Radiation through their Influence on Terrestrial Temperature." The importance of the question justifies a critical examination of the relationship of the older methods to that of Newcomb, and though I do not agree with his contention that his process gives us more than can be obtained from Fourier's analysis, it has the advantage of great simplicity in its numerical work, and should prove useful in a certain, though I am afraid, very limited field. Let f ( t ) represent a function of a variable which we may take to be the time, and let the average value of the function be zero. Newcomb examines the sum of the series f ( t 1 ) f ( t 1 + τ) + f ( t 2 ) f ( t 2 + τ) + f ( t 3 ) f ( t 3 + τ) + ..., where t 1 , t 2 , etc., are definite values of the variable which are taken to lie at equal distances from each other. If the function be periodic so as to repeat itself after an interval τ, the products are all squares and each term is positive. If, on the other hand, the periodic time be 2τ, each product will be negative and the sum itself therefore negative. It is easy to see that if τ be varied continuously the sum of the series passes through maxima and minima, and the maxima will indicated the periodic time, or any of its multiples.


Author(s):  
Till J. Kniffka ◽  
Horst Ecker

Stability studies of parametrically excited systems are frequently carried out by numerical methods. Especially for LTP-systems, several such methods are known and in practical use. This study investigates and compares two methods that are both based on Floquet’s theorem. As an introductary benchmark problem a 1-dof system is employed, which is basically a mechanical representation of the damped Mathieu-equation. The second problem to be studied in this contribution is a time-periodic 2-dof vibrational system. The system equations are transformed into a modal representation to facilitate the application and interpretation of the results obtained by different methods. Both numerical methods are similar in the sense that a monodromy matrix for the LTP-system is calculated numerically. However, one method uses the period of the parametric excitation as the interval for establishing that matrix. The other method is based on the period of the solution, which is not known exactly. Numerical results are computed by both methods and compared in order to work out how they can be applied efficiently.


2012 ◽  
Vol 8 (3) ◽  
pp. 1059-1066 ◽  
Author(s):  
V. Rath ◽  
J. F. González Rouco ◽  
H. Goosse

Abstract. The investigation of observed borehole temperatures has proved to be a valuable tool for the reconstruction of ground surface temperature histories. However, there are still many open questions concerning the significance and accuracy of the reconstructions from these data. In particular, the temperature signal of the warming after the Last Glacial Maximum is still present in borehole temperature profiles. It is shown here that this signal also influences the relatively shallow boreholes used in current paleoclimate inversions to estimate temperature changes in the last centuries by producing errors in the determination of the steady state geothermal gradient. However, the impact on estimates of past temperature changes is weaker. For deeper boreholes, the curvature of the long-term signal is significant. A correction based on simple assumptions about glacial–interglacial temperature changes shows promising results, improving the extraction of millennial scale signals. The same procedure may help when comparing observed borehole temperature profiles with the results from numerical climate models.


1985 ◽  
Vol 104 (1) ◽  
pp. 125-133 ◽  
Author(s):  
K. Chaney ◽  
D. R. Hodgson ◽  
M. A. Braim

SummaryPhysical measurements were made on the soil of a long-term cultivation experiment comparing direct drilling, tine cultivation and mouldboard ploughing for spring barley to investigate possible reasons for differences in yield. The soil was a typical argillio brown earth, approximately 90 cm of sandy clay loam topsoil and clay loam subsoil overlying magnesian limestone. For the three periods 1971–4, 1975–7 and 1978–80 the mean grain yields were marginally lower after direct drilling than after shallow cultivation or ploughing. There was an average decline in yield of 1·33 t/ha from the first to the last period, the decline being greater for direct drilling than the other two tillage systems. Although the surface horizon (0–5 cm) of direct-drilled soil had a higher content of organic matter than the ploughed, this did not increase the stability of the aggregates. Slaking tests had shown the soil to be inherently unstable and likely to suffer from structural problems. After the first 3 years bulk density of direct-drilled soil (0–15 cm) increased markedly to ca. l·5 g/cm8 and then remained relatively stable. In the ploughed soil, density increased steadily over the period to an average value of co. 1·45 g/cm8. Tine cultivation to 7–8 cm reduced cone resistance values in the surface compared with direct-drilled soil but below 15 cm there were no significant differences. Ploughing gave significantly lower values than direct drilling to a depth of 30 cm. Measurements of pore sizes in direct-drilled and ploughed soil were highly variable with few significant differences. Mean air capacity values (1978–80) tended to be lower in direct-drilled than in ploughed topsoil particularly for plots direct drilled after 7 years of deep tine cultivation. A limited number of root measurements in 1978 and 1980 showed that the length of root per unit of ground area was much less after direct drilling than after ploughing. Shallow cultivation, surprisingly, gave most root with a greater proportion of the root system below 20 cm than in the other two treatments. The classification of this soil according to its suitability for direct drilling cereals is discussed.


Author(s):  
H. BARCELONA ◽  
G. PERI ◽  
D. WINOCUR ◽  
A. FAVETTO

The present research explores the Bañitos-Gollete geothermal field located in the Frontal Andes Cordillera over the Pampean flat-slab. We carried out an audiomagnetotelluric survey in order to define the underground geoelectrical structure and to understand the link between the geothermal fluid flow path and the main geological structures. 2-D audiomagnetotelluric models suggest that the deep-rooted N-S fault system controls the geothermal flow path. We propose a conductive heat-driven system, taking into consideration the geologic setting and the supposed low geothermal gradient of this tectonic environment. The mature Na-Cl waters from Gollete and an estimated reservoir temperature of ~140ºC are consistent with this conceptual model. Further investigations are required to assess the geothermal potential of the study area, and the present work likely represents only the first but necessary step in the exploration process.


2018 ◽  
Vol 10 (1) ◽  
pp. 159
Author(s):  
Sutriyo . ◽  
Raditya Iswandana ◽  
Elisa Nur Widiya

Objective: This study aimed to obtain a formula with an optimal sweetener concentration of beet extract that can cover the bitter taste of bitter melonand confer optimal physical properties on the syrup.Methods: The syrups were prepared by mixing bitter melon extract, sucrose, beet extract, sorbitol, sodium benzoate, strawberry essence, anddemineralized water. The control formula and formulas 1, 2, and 3 contained beet extract at concentrations of 0% and 10%, 15%, and 20%, respectively.All formulas were evaluated to determine their physical properties, stability, and bitterness. The bitterness was tested on 30 respondents, with databeing analyzed using Wilcoxon’s test on SPSS software.Results and Conclusion: Formula 3 with 20% beet extract was identified as the best formula for masking bitter taste because it had a significantlybetter average value than the other formulas (p<0.05) and the highest bitterless taste percentage (86.67%), with physical properties of a brownishblackcolor, odor of mixture of strawberry and dominant beet, a sweet and dominant beet taste, pH 5.46, and specific gravity of 1.228 g/mL.


2018 ◽  
Vol 108 (2) ◽  
pp. 588-603 ◽  
Author(s):  
Stephan Bentz ◽  
Patricia Martínez‐Garzón ◽  
Grzegorz Kwiatek ◽  
Marco Bohnhoff ◽  
Joerg Renner

1982 ◽  
Vol 22 (01) ◽  
pp. 17-27 ◽  
Author(s):  
J.E. Harrar ◽  
F.E. Locke ◽  
C.H. Otto ◽  
L.E. Lorensen ◽  
S.B. Monaco ◽  
...  

Harrar, J.E., Lawrence Livermore Natl. Laboratory Locke, F.E., Lawrence Livermore Natl. Laboratory Otto Jr., C.H., Lawrence Livermore Natl. Laboratory Lorensen, L.E., Lawrence Livermore Natl. Laboratory Monaco, S.B., Lawrence Livermore Natl. Laboratory Frey, W.P., Lawrence Livermore Natl. Laboratory Abstract A pilot-size brine handling system was operated from Magmamax Well 1 in southern California to study the characteristics of siliceous scale deposition and to evaluate the possibility of treating the brine with chemical additives to control scaling. The rates of formation, chemical constitution, and morphology of the scales were examined as functions of temperature, brine salinity, substrate material, and antiscalant additive activity. Potential antiscalant compounds were screened using a silica-precipitation inhibition test at 90 deg. C. The most active classes of compounds were those containing polymeric chains of oxyethylene and polymeric nitrogen compounds that are cationic in character. The best single compound was Corcat P-18 TM (Cordova Chemical Co. polyethylene imine, molecular weight 1,800). This compound had no effect on the scale formed at 220 deg. C but it reduced the rates of scaling at 125 and 90 deg. C by factors of 4 and 18, respectively, and it also functioned as a corrosion inhibitor. The best additive formulation for the brines of the Salton Sea Geothermal field (SSGF) appears to be a mixture of an organic silica-precipitation inhibitor, a small amount of hydrochloric acid, and a phosphonate crystalline deposit inhibitor. Introduction Interest in utilizing the geothermal resources of the Imperial Valley in California for the generation of electricity has accelerated rapidly in recent years. One resource in particular, the SSGF, is attractive because of its high temperature and size. Recent estimates of its potential for electrical power generation range between 1,300 and 8,700 MW per year (over a 20-year period). The fluid of this resource, however, is a highly corrosive, high-salinity brine containing several constituents that form deposits of scale on power plant components as the brine is cooled. Economical utilization of the SSGF will require techniques for limiting scaling and corrosion to acceptable levels. Scale deposition control at SSGF is particularly difficult because the scale that forms in the portions of the brine handling equipment operating at low pressures and temperatures (100 to 150 deg. C) is predominantly silica and it deposits at rates approaching 0.2 in./D. (Energy extraction systems in which the brine is flashed and injected at high temperature mitigate this problem, but considerable energy is discarded.) Chemical treatment scheme to retard the low temperature scale have been considered, but until recently there have been no systematic investigations of this approach. In 1976, Owen and coworkers demonstrated effective control of the siliceous scales by acidification of the brine with hydrochloric acid, and this technique has been verified in New Zealand by Rothbaum et al. However, for SSGF brines, acidification has several disadvantages:because concentrations &gt;300 ppm of HCl are required, chemical costs are high;the pH of the brine must be lowered from 6 to 3 for complete scale control, and this sharply increases corrosion rates, andacidification tends to interfere with effluent brine treatment Processes involving sludge-bed reactor clarification. Other methods of scale control such as seeding with a silica sludge and the use of scale adhesion inhibitors also have been examined briefly. In this paper we present the results of tests of organic chemical agents for silica scale control in hypersaline geothermal brines. Prior to this work, virtually no knowledge existed on the types of compounds that would interact with silica under the severe geothermal conditions of high temperature, high ionic strength, and high fluid shear rates. Accordingly, to screen a large number of substances rather rapidly, we designed a small-scale flash system as a brine treatment test apparatus and operated it from SSGF Magmamax Well 1 and Woolsey Well 1. SPEJ P. 17^


Sign in / Sign up

Export Citation Format

Share Document