An Observational Examination of Long-Lived Supercells. Part II: Environmental Conditions and Forecasting

2006 ◽  
Vol 21 (5) ◽  
pp. 689-714 ◽  
Author(s):  
Matthew J. Bunkers ◽  
Jeffrey S. Johnson ◽  
Lee J. Czepyha ◽  
Jason M. Grzywacz ◽  
Brian A. Klimowski ◽  
...  

Abstract The local and larger-scale environments of 184 long-lived supercell events (containing one or more supercells with lifetimes ≥4 h; see Part I of this paper) are investigated and subsequently compared with those from 137 moderate-lived events (average supercell lifetime 2–4 h) and 119 short-lived events (average supercell lifetime ≤2 h) to better anticipate supercell longevity in the operational setting. Consistent with many previous studies, long-lived supercells occur in environments with much stronger 0–8-km bulk wind shear than what is observed for short-lived supercells; this strong shear leads to significant storm-relative winds in the mid- to upper levels for the longest-lived supercells. Additionally, the bulk Richardson number falls into a relatively narrow range for the longest-lived supercells—ranging mostly from 5 to 45. The mesoscale to synoptic-scale environment can also predispose a supercell to be long or short lived, somewhat independent of the local environment. For example, long-lived supercells may occur when supercells travel within a broad warm sector or else in close proximity to mesoscale or larger-scale boundaries (e.g., along or near a warm front, an old outflow boundary, or a moisture/buoyancy axis), even if the deep-layer shear is suboptimal. By way of contrast, strong atmospheric forcing can result in linear convection (and thus shorter-lived supercells) in a strongly sheared environment that would otherwise favor discrete, long-lived supercells.

2020 ◽  
Author(s):  
Michael Kunz ◽  
Jan Wandel ◽  
Elody Fluck ◽  
Sven Baumstark ◽  
Susanna Mohr ◽  
...  

Abstract. Around 26 000 severe convective storm tracks between 2005 and 2014 have been estimated from 2D radar reflectivity for parts of Europe, including Germany, France, Belgium, and Luxembourg. This event-set was further combined with eyewitness reports, convection-related parameters from ERA-Interim reanalysis and synoptic-scale fronts based on the same reanalysis. Our analyses reveal that about a quarter of all severe thunderstorms in the investigation area were associated with a front. Over complex terrains, such as in southern Germany, the proportion of frontal convective storms is around 10–15 %, while over flat terrain half of the events require a front to trigger convection. Frontal hailstorms on average produce larger hailstones and have a longer track. These events usually develop in a high-shear environment. Using composites of environmental conditions centered around the hailstorm tracks, we found that dynamical proxies such as deep-layer shear or storm-relative helicity become important when separating hail diameters and, in particular, their lengths; 0–3 km helicity as a dynamical proxy performs better compared to wind shear for the separation. In contrast, thermodynamical proxies such as Lifted Index or lapse rate show only small differences between the different intensity classes.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 89
Author(s):  
Faruk Tuna ◽  
Ferhat Bingöl

Atmospheric stability has been studied for decades. There are several methodologies that evolved over the years. In this study, a special experimental meteorological mast that has been erected to a complex site has been used to calculate dimensionless Obukhov length ( ζ = z L ) , dimensionless momentum ( φ m ), and heat coefficients ( φ h ). The results are compared with the ones from average value approaches: Richardson number, flux-profile (F-P) relations, and wind shear exponent methods. The results show that the estimated ζ values, using the bulk Richardson number, get along well with the reference ζ within the neutral and stable regimes. F-P relations and wind shear exponent methods result in the best agreement for stable and neutral regimes. Nevertheless, average oriented methods are not reliable for the other regimes.


Author(s):  
Jake P. Mulholland ◽  
John M. Peters ◽  
Hugh Morrison

AbstractThe influence of vertical wind shear on updraft entrainment in squall lines is not well understood. To address this knowledge gap, a suite of high-resolution idealized numerical model simulations of squall lines were run in various vertical wind shear (hereafter “shear”) environments to study the effects of shear on entrainment in deep convective updrafts. Low-level horizontal mass flux into the leading edge of the cold pool was strongest in the simulations with the strongest low-level shear. These simulations consequently displayed wider updrafts, less entrainment-driven dilution, and larger buoyancy than the simulations with comparatively weak low-level shear. An analysis of vertical accelerations along trajectories that passed through updrafts showed larger net accelerations from buoyancy in the simulations with stronger low-level shear, which demonstrates how less entrainment-driven dilution equated to stronger updrafts. The effects of upper-level shear on entrainment and updraft vertical velocities were generally less pronounced than the effects of low-level shear. We argue that in addition to the outflow boundary-shear interactions and their effect on updraft tilt established by previous authors, decreased entrainment-driven dilution is yet another beneficial effect of strong low-level shear on squall line updraft intensity.


2018 ◽  
Author(s):  
Michael N. Vlasov ◽  
Michael C. Kelley

Abstract. Maximum upper atmospheric turbulence results in the mesosphere from convective and/or dynamic instabilities induced by gravity waves. For the first time, by comparing the vertical accelerations induced by wind shear and the buoyancy force, it is shown that the critical Richardson number Ric can be estimated. Dynamic instability is developed for Ri 


2014 ◽  
Vol 7 (6) ◽  
pp. 2599-2611 ◽  
Author(s):  
Y. Zhang ◽  
Z. Gao ◽  
D. Li ◽  
Y. Li ◽  
N. Zhang ◽  
...  

Abstract. Experimental data from four field campaigns are used to explore the variability of the bulk Richardson number of the entire planetary boundary layer (PBL), Ribc, which is a key parameter for calculating the PBL height (PBLH) in numerical weather and climate models with the bulk Richardson number method. First, the PBLHs of three different thermally stratified boundary layers (i.e., strongly stable boundary layers, weakly stable boundary layers, and unstable boundary layers) from the four field campaigns are determined using the turbulence method, the potential temperature gradient method, the low-level jet method, and the modified parcel method. Then for each type of boundary layer, an optimal Ribc is obtained through linear fitting and statistical error minimization methods so that the bulk Richardson method with this optimal Ribc yields similar estimates of PBLHs as the methods mentioned above. We find that the optimal Ribc increases as the PBL becomes more unstable: 0.24 for strongly stable boundary layers, 0.31 for weakly stable boundary layers, and 0.39 for unstable boundary layers. Compared with previous schemes that use a single value of Ribc in calculating the PBLH for all types of boundary layers, the new values of Ribc proposed by this study yield more accurate estimates of PBLHs.


2018 ◽  
Vol 42 (6) ◽  
pp. 561-575 ◽  
Author(s):  
Lars Morten Bardal ◽  
Anja Eide Onstad ◽  
Lars Roar Sætran ◽  
John Amund Lund

Understanding the atmospheric stability conditions is important in order to obtain accurate estimates of the vertical wind speed profile. This work compares and evaluates common methods for estimation of atmospheric stability using standard meteorological mast observations. Atmospheric stability distributions from three different met-masts located at two coastal sites are calculated and compared. The atmospheric stability parameter, L is estimated using the bulk Richardson number, the surface-layer Richardson number, and calculated directly from eddy covariance flux measurements. The resulting distributions vary depending on which method is used. The atmospheric stability measurements from two masts located 3 km apart in similar terrain are compared directly. The highest correlation is found for the surface-layer Richardson number method. This method it also less sensitive to variation of measurement heights than the bulk Richardson number method.


2010 ◽  
Vol 138 (11) ◽  
pp. 4076-4097 ◽  
Author(s):  
George H. Bryan ◽  
Matthew D. Parker

Abstract Rawinsonde data were collected before and during passage of a squall line in Oklahoma on 15 May 2009 during the Second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). Nine soundings were released within 3 h, allowing for unprecedented analysis of the squall line’s internal structure and nearby environment. Four soundings were released in the prestorm environment and they document the following features: low-level cooling associated with the reduction of solar isolation by a cirrus anvil; abrupt warming (1.5 K in 30 min) above the boundary layer, which is probably attributable to a gravity wave; increases in both low-level and deep-layer vertical wind shear within 100 km of the squall line; and evidence of ascent extending at least 75 km ahead of the squall line. The next sounding was released ∼5 km ahead of the squall line’s gust front; it documented a moist absolutely unstable layer within a 2-km-deep layer of ascent, with vertical air velocity of approximately 6 m s−1. Another sounding was released after the gust front passed but before precipitation began; this sounding showed the cold pool to be ∼4 km deep, with a cold pool intensity C ≈ 35 m s−1, even though this sounding was located only 8 km behind the surface gust front. The final three soundings were released in the trailing stratiform region of the squall line, and they showed typical features such as: “onion”-shaped soundings, nearly uniform equivalent potential temperature over a deep layer, and an elevated rear inflow jet. The cold pool was 4.7 km deep in the trailing stratiform region, and extended ∼1 km above the melting level, suggesting that sublimation was a contributor to cold pool development. A mesoscale analysis of the sounding data shows an upshear tilt to the squall line, which is consistent with the cold pool intensity C being much larger than a measure of environmental vertical wind shear ΔU. This dataset should be useful for evaluating cloud-scale numerical model simulations and analytic theory, but the authors argue that additional observations of this type should be collected in future field projects.


Sign in / Sign up

Export Citation Format

Share Document