scholarly journals Modular Battery Charger for Light Electric Vehicles

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 774 ◽  
Author(s):  
Andrei Blinov ◽  
Ievgen Verbytskyi ◽  
Denys Zinchenko ◽  
Dmitri Vinnikov ◽  
Ilya Galkin

Rapid developments in energy storage and conversion technologies have led to the proliferation of low- and medium-power electric vehicles. Their regular operation typically requires an on-board battery charger that features small dimensions, high efficiency and power quality. This paper analyses an interleaved step-down single-ended primary-inductor converter (SEPIC) operating in the discontinuous conduction mode (DCM) for charging of battery-powered light electric vehicles such as an electric wheelchair. The required characteristics are achieved thanks to favourable arrangement of the inductors in the circuit: the input inductor is used for power factor correction (PFC) without additional elements, while the other inductor is used to provide galvanic isolation and required voltage conversion ratio. A modular interleaved structure of the converter helps to implement low-profile converter design with standard components, distribute the power losses and improve the performance. An optimal number of converter cells was estimated. The converter uses a simple control algorithm for constant current and constant voltage charging modes. To reduce the energy losses, synchronous rectification along with a common regenerative snubber circuit was implemented. The proposed charger concept was verified with a developed 230 VAC to 29.4 VDC experimental prototype that has proved its effectiveness.

2020 ◽  
Vol 67 (11) ◽  
pp. 4099-4109
Author(s):  
Yong Qu ◽  
Wei Shu ◽  
Lei Qiu ◽  
Yen-Cheng Kuan ◽  
Shiuh-Hua Wood Chiang ◽  
...  

In this paper, a single switch single stage switched inductor based cuk converter with power factor correction control techniques is proposed. The main features of the proposed converter is low current stress, high voltage conversion ratio, reduction of components, high efficiency, low THD, etc., The operation of the proposed converter is explained in several modes along with the design of the converter. The performance of the proposed converter with different loads such as resistive, battery and motor loads with CC and CV control is analyzed and various factors such as power factor, efficiency and THD are compared. The Simulation work is carried out in MATLAB/Simulink software.


Author(s):  
Amin Amin ◽  
Kristian Ismail ◽  
Abdul Hapid

Cell imbalance has always happened in the series-connected battery. Series-connected battery needs to be balanced to maintain capacity and maximize the batteries lifespan. Cell balancing helps to dispart energy equally among battery cells. For active cell balancing, the use of a DC-DC converter module for cell balancing is quite common to achieve high efficiency, reliability, and high power density converter. This paper describes the implementation of a LiFePO4 battery charger based on the DC-DC converter module used for cell balancing application. A constant current-constant voltage (CC-CV) controller for the charger, which is a general charging method applied to the LiFePO4 battery, is presented for preventing overcharging when considering the nonlinear property of a LiFePO4 battery. The prototype is made up with an input voltage of 43V to 110V and the maximum output voltage of 3.75V, allowing to charge a LiFePO4 cell battery and balancing the battery pack with many cells from 15 to 30 cells. The goal is to have a LiFePO4 battery charger with an approximate power of 40W and the maximum output current of 10A. Experimental results on a 160AH LiFePO4 battery for some state of charge (SoC) shows that the maximum battery voltage has been limited at 3.77 volt and maximum charging current could reach up to 10.64 A. The results show that the charger can maintain battery voltage at the maximum reference voltage and avoid the LiFePO4 battery from overcharging.


2012 ◽  
Vol 5 (9) ◽  
pp. 1714-1722 ◽  
Author(s):  
H. Bai ◽  
W. Guo ◽  
G. Szatmari-Voicu ◽  
N. Wang ◽  
J. Patterson ◽  
...  

Author(s):  
Mustapha El Alaoui ◽  
Karim El Khadiri ◽  
Rachid El Alami ◽  
Ahmed Tahiri ◽  
Ahmed Lakhssassi ◽  
...  

A new Li-Ion battery charger interface (BCI) using pulse control (PC) technique is designed and analyzed in this paper. Thanks to the use of PC technique, the main standards of the Li-Ion battery charger, i.e. fast charge, small surface area and high efficiency, are achieved. The proposed charger achieves full charge in forty-one minutes passing by the constant current (CC) charging mode which also included the start-up and the constant voltage mode (CV) charging mode. It designed, simulated and layouted which occupies a small size area 0.1 mm2 by using Taiwan Semiconductor Manufacturing Company 180 nm complementary metal oxide semi-conductor technology (TSMC 180 nm CMOS) technology in Cadence Virtuoso software. The battery voltage VBAT varies between 2.9 V to 4.35 V and the maximum battery current IBAT is 2.1 A in CC charging mode, according to a maximum input voltage VIN equal 5 V. The maximum charging efficiency reaches 98%.


2021 ◽  
Vol 2 (1) ◽  
pp. 32-44
Author(s):  
Federico M. Serra ◽  
Cristian H. De Angelo

A nonlinear controller for an electric vehicle battery charger is proposed in this work. The controller allows charging the battery bank with constant current and constant voltage charging profile, while ensuring unity power factor and low distortion in the grid current. A single model is made for the complete system and the controller is designed using interconnection and damping assignment. The proposed controller ensures the closed-loop stability and allows decoupling the system avoiding disturbances in the electric grid and battery bank. The proposal is validated with simulation results.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Youssef Ziadi ◽  
Hassan Qjidaa

This paper presents a high efficiency Li-ion battery LDO-based charger IC which adopted a three-mode control: trickle constant current, fast constant current, and constant voltage modes. The criteria of the proposed Li-ion battery charger, including high accuracy, high efficiency, and low size area, are of high importance. The simulation results provide the trickle current of 116 mA, maximum charging current of 448 mA, and charging voltage of 4.21 V at the power supply of 4.8–5 V, using 0.18 μm CMOS technology.


Sign in / Sign up

Export Citation Format

Share Document