scholarly journals Thermogravimetric Kinetic Study of Automobile Shredder Residue (ASR) Pyrolysis

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1451
Author(s):  
Soyoung Han ◽  
Yong-Chul Jang ◽  
Yeon-Seok Choi ◽  
Sang-Kyu Choi

The separated and sorted combustibles from automobile shredder residue (ASR) can be pyrolyzed and used as a heat source or liquefied to produce materials with added value. In this study, the thermal decomposition properties of ASR were determined and thermal kinetic studies were performed. Four types of raw materials were separated from ASR and mixed at a constant ratio: 38.5 wt.% of plastic; 31.6 wt.% of fiber; 17.3 wt.% of sponge; and 12.3 wt.% of rubber. Pyrolysis kinetics analysis was carried out using the Thermogravimetric analysis-derivative thermogravimetry (TGA-DTG) technique and activation energy were calculated by differential and integral isoconversional model methods, Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), and Friedman. Thermogravimetric analysis was performed under nitrogen with four temperature rate conditions from room temperature to 800 °C. In the thermal degradation profile, peaks representing mass loss rates were observed for each sample at different temperature ranges. It was observed that the final mass reduction temperature in the mixed samples was lower than in the individual samples. The activation energies of plastics and rubbers were 105.39 kJ/mol and 115.20 kJ/mol respectively. The sponge foams and fibers were 172.59 kJ/mol and 160.30 kJ/mol respectively. The mixed sample had an activation energy value of 159.56 kJ/mol. The basic physicochemical and pyrolysis characteristics of ASR were examined to be used as basic data for the recycling of ASR for future pyrolysis.

2012 ◽  
Vol 260-261 ◽  
pp. 187-191
Author(s):  
Ya Bo Li ◽  
Xu Ming Zhang ◽  
Lei Qiang Zhao ◽  
Qiang Lu ◽  
Chang Qing Dong

Thermogravimetric analysis (TGA) was employed to study the pyrolysis and combustion characteristics of three primary biomass components (cellulose, xylan and lignin) and seven different biomass materials under both of nitrogen and air atmosphere. Based on the experimental results, the pyrolysis and combustion kinetics were calculated. The results indicated that the three primary biomass components exhibited different decomposition characteristics and pyrolysis kinetics. Xylan was the least thermal stable component, while the lignin would form much more solid residues than the cellulose and xylan under the nitrogen atmosphere. Moreover, the pyrolytic devolatilization process of the cellulose had high activation energy, so was the char combustion process of the lignin. The seven biomass materials showed similar pyrolysis characteristics, and poplar wood exhibited high activation energy values in both of pyrolysis and combustion processes.


2014 ◽  
Vol 960-961 ◽  
pp. 442-446
Author(s):  
Lin Chen ◽  
Shu Zhong Wang ◽  
Zhi Qiang Wu ◽  
Hai Yu Meng ◽  
Jun Zhao

Wood-based materials from Municipal Solid Waste have the potential of covering a significant part of the future demand on gasification capacities. However, their pyrolysis kinetics and gasification behavior has not yet been fully investigated. This paper describes the pyrolysis characteristics of typing paper and Chinese parasol from municipal solid waste applying the non-isothermal thermogravimetric analysis, the apparent activation energy and the pre-exponential factor were obtained by kinetics analysis at the heating rate of 10/20/40 oC•min-1.


2013 ◽  
Vol 291-294 ◽  
pp. 307-311
Author(s):  
Wen Yan Li ◽  
Zhi Bo Zhang ◽  
Lei Qiang Zhao ◽  
Qiang Lu

Thermogravimetric analysis (TGA) was employed to study the pyrolysis characteristics of two biomass materials (poplar and pine wood) and their demineralized samples under nitrogen atmosphere. Based on the experimental results, the pyrolysis kinetics were calculated. The results indicated that the starting and ending time of devolatilization were delayed after the demineralization of the biomass. For all the materials, the temperature of the maximum weight loss rate occurred at around 390°C, while the maximum values increased a little after demineralization. The pine wood was more difficult to decompose than the poplar wood, due to its high activation energy values. In addition, after demineralization, the activation energy values of the pine wood decreased, while the values of the poplar wood were not significantly changed.


2013 ◽  
Vol 805-806 ◽  
pp. 265-268 ◽  
Author(s):  
Fang Ming Cui ◽  
Xiao Yuan Zhang ◽  
Li Min Shang

Thermogravimetric analysis (TGA) was employed to study the pyrolysis characteristics of four glucose-based and three fructose-based carbohydrates. Kinetic parameters were calculated based on the experiment data. The results indicated that the starting and maximal pyrolysis temperatures of the glucose-based carbohydrates were increased steadily as the rising of their degree of polymerization (DP). The fructose-based carbohydrates exhibited similar pyrolysis behaviors as the glucose-based carbohydrates, but the difference was smaller. Kinetic calculations revealed that the activation energy values of the glucose-based carbohydrates were higher than those of the fructose-based carbohydrates, indicating the glucose-based carbohydrates were more difficult to decompose than the fructose-based carbohydrates.


2019 ◽  
Vol 38 (1) ◽  
pp. 298-309
Author(s):  
Fredy Surahmanto ◽  
Harwin Saptoadi ◽  
Hary Sulistyo ◽  
Tri A Rohmat

The pyrolysis kinetics of oil-palm solid waste was investigated by performing experiments on its individual components, including empty fruit bunch, fibre, shell, as well as the blends by using a simultaneous thermogravimetric analyser at a heating rate of 10°C/min under nitrogen atmosphere and setting up from initial temperature of 30°C to a final temperature of 550°C. The results revealed that the activation energy and frequency factor values of empty fruit bunch, fibre, and shell are 7.58–63.25 kJ/mol and 8.045E-02–4.054E + 04 s−1, 10.45–50.76 kJ/mol and 3.639E-01–5.129E + 03 s−1, 9.46–55.64 kJ/mol and 2.753E-01–9.268E + 03, respectively. Whereas, the corresponding values for empty fruit bunch–fibre, empty fruit bunch–shell, fibre–shell, empty fruit bunch–fibre–shell are 2.97–38.35 kJ/mol and 1.123E-02–1.326E + 02 s−1, 7.95–40.12 kJ/mol and 9.26E-02–2.101E + 02 s−1, 9.14–50.17 kJ/mol and 1.249E-01–2.25E + 03 s−1, 8.35–45.69 kJ/mol and 1.344E + 01–4.23E + 05 s−1, respectively. It was found that the activation energy and frequency factor values of the blends were dominantly due to the role of the components with a synergistic effect occurred during pyrolysis.


2012 ◽  
Vol 568 ◽  
pp. 13-16
Author(s):  
Xiang Zhang ◽  
Fan Zhang

The pyrolysis kinetics properties of three kinds of woods, pinus koraiensis, hemlock and spruce, which were taken from the ancient building, the Potala Palace in Lhasa of China, were investigated by using thermogravimetric analysis method. And the Kissinger method was applied to calculate the degradation activation energy of the lignin of these three kinds of wood. The degradation activation energy of the lignin in pinus koraiensis, hemlock and spruce woods was 218kJ/mol, 146kJ/mol and 188kJ/mol, respectively, which showed that the degradation order from hard to easy for these three kinds of wood was pinus koraiensis, spruce and hemlock.


2015 ◽  
Vol 1092-1093 ◽  
pp. 118-121
Author(s):  
Dong Yu Chen ◽  
Qing Yu Liu

To study the influence of KCl pretreating on the pyrolysis kinetics of soybean stalk, the pyrolysis of soybean stalk pretreated by different concentration KCl solutions were performed by nonisothermal thermogravimetric analysis (TGA) at five different heating rates. The Ozawa method was employed to calculate the activation energy. The results showed that the pyrolysis process of the soybean stalk pretreated by 3% and 10% KCl solution can be separated into four stages (water loss, depolymerization and vitrification, thermal decomposition, and carbonization). With the heating rate increasing, the main pyrolysis zone of the TG (thermogravimetric) and DTG curves move to the higher temperature region, and the maximum pyrolysis rate and its corresponding temperature increase too. A small amount of metal salts addition is conducive to the formation of volatile, and a certain amount of metal salts can improve the charcoal yield. More KCl additive makes the lower activation energy value, and the obtained activation energy value increases with the reaction degree.


2013 ◽  
Vol 448-453 ◽  
pp. 1665-1674
Author(s):  
Dong Yu Chen ◽  
Qing Yu Liu ◽  
Yan Qing Hu

To study the influence of KCl pretreating on the pyrolysis kinetics of sunflower stalk, the pyrolysis of sunflower stalk pretreated by different concentration KCl solutions were performed by nonisothermal thermogravimetric analysis (TGA) at five different heating rates. The Ozawa and Kissinger methods were employed to calculate the activation energy and the Šatava method was used to obtain the kinetic mechanism model. The results showed that the pyrolysis process of the sunflower stalk pretreated by 3% and 10% KCl solution can be separated into four stages (water loss, depolymerization and vitrification, thermal decomposition, and carbonization). With the heating rate increasing, the main pyrolysis zone of the TG (thermogravimetric) and DTG curves move to the higher temperature direction, and the maximum pyrolysis rate and its corresponding temperature increase too. Adding a small amount of metal salts is conducive to the formation of volatile, and a certain amount of metal salts can improve the charcoal yield. More KCl additive makes the lower activation energy value, and the obtained activation energy value increases with the heating rate increasing. By means of the Šatava method, the kinetic mechanism model for the pyrolysis of KCl-pretreated sunflower stalk is Zhuralev-Lesakin-Tempelman equation, which is three-dimensional diffusion.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 836 ◽  
Author(s):  
Eunhye Song ◽  
Daegi Kim ◽  
Cheol-Jin Jeong ◽  
Do-Yong Kim

Coastal debris has recently emerged as a serious environmental pollution problem. Coastal debris can be treated using pyrolysis because it consists mainly of combustible materials like plastics (e.g., polyethylene (PE), polypropylene (PP), nylon) and wood. In this study, the pyrolysis characteristics of coastal debris were fully utilized by applying their basic data to fuel production. The initial temperature increased from 330 °C to 380 °C for the nylon fishing net coastal debris sample, from 405.01 °C to 430.08 °C for the PE fishing net coastal debris sample, from 395.01 °C to 419.96 °C for the PP rope coastal debris sample, and from 114.95 °C to 115.02 °C for the wood (bamboo) coastal debris sample. The activation rate of the global activation energy and the pre-exponential factors rose with the increasing heating rate, complementing the reduction rate constant due to the larger growth of the exponential term due to the kinetic models used.


Sign in / Sign up

Export Citation Format

Share Document