Thermogravimetric Analysis of Different Biomass Materials and the Primary Biomass Components

2012 ◽  
Vol 260-261 ◽  
pp. 187-191
Author(s):  
Ya Bo Li ◽  
Xu Ming Zhang ◽  
Lei Qiang Zhao ◽  
Qiang Lu ◽  
Chang Qing Dong

Thermogravimetric analysis (TGA) was employed to study the pyrolysis and combustion characteristics of three primary biomass components (cellulose, xylan and lignin) and seven different biomass materials under both of nitrogen and air atmosphere. Based on the experimental results, the pyrolysis and combustion kinetics were calculated. The results indicated that the three primary biomass components exhibited different decomposition characteristics and pyrolysis kinetics. Xylan was the least thermal stable component, while the lignin would form much more solid residues than the cellulose and xylan under the nitrogen atmosphere. Moreover, the pyrolytic devolatilization process of the cellulose had high activation energy, so was the char combustion process of the lignin. The seven biomass materials showed similar pyrolysis characteristics, and poplar wood exhibited high activation energy values in both of pyrolysis and combustion processes.

2013 ◽  
Vol 291-294 ◽  
pp. 307-311
Author(s):  
Wen Yan Li ◽  
Zhi Bo Zhang ◽  
Lei Qiang Zhao ◽  
Qiang Lu

Thermogravimetric analysis (TGA) was employed to study the pyrolysis characteristics of two biomass materials (poplar and pine wood) and their demineralized samples under nitrogen atmosphere. Based on the experimental results, the pyrolysis kinetics were calculated. The results indicated that the starting and ending time of devolatilization were delayed after the demineralization of the biomass. For all the materials, the temperature of the maximum weight loss rate occurred at around 390°C, while the maximum values increased a little after demineralization. The pine wood was more difficult to decompose than the poplar wood, due to its high activation energy values. In addition, after demineralization, the activation energy values of the pine wood decreased, while the values of the poplar wood were not significantly changed.


2019 ◽  
Vol 38 (1) ◽  
pp. 298-309
Author(s):  
Fredy Surahmanto ◽  
Harwin Saptoadi ◽  
Hary Sulistyo ◽  
Tri A Rohmat

The pyrolysis kinetics of oil-palm solid waste was investigated by performing experiments on its individual components, including empty fruit bunch, fibre, shell, as well as the blends by using a simultaneous thermogravimetric analyser at a heating rate of 10°C/min under nitrogen atmosphere and setting up from initial temperature of 30°C to a final temperature of 550°C. The results revealed that the activation energy and frequency factor values of empty fruit bunch, fibre, and shell are 7.58–63.25 kJ/mol and 8.045E-02–4.054E + 04 s−1, 10.45–50.76 kJ/mol and 3.639E-01–5.129E + 03 s−1, 9.46–55.64 kJ/mol and 2.753E-01–9.268E + 03, respectively. Whereas, the corresponding values for empty fruit bunch–fibre, empty fruit bunch–shell, fibre–shell, empty fruit bunch–fibre–shell are 2.97–38.35 kJ/mol and 1.123E-02–1.326E + 02 s−1, 7.95–40.12 kJ/mol and 9.26E-02–2.101E + 02 s−1, 9.14–50.17 kJ/mol and 1.249E-01–2.25E + 03 s−1, 8.35–45.69 kJ/mol and 1.344E + 01–4.23E + 05 s−1, respectively. It was found that the activation energy and frequency factor values of the blends were dominantly due to the role of the components with a synergistic effect occurred during pyrolysis.


Author(s):  
Tanveer Rasool ◽  
Vimal Chandra Srivastava ◽  
M. N. S. Khan

Abstract A comparative study on thermal analysis of two waste biomass materials of Kashmir namely deodar (Cedrus deodara) saw dust (DSD) and rice husk (RH), was carried out at different heating rates of 10, 25, 50 and 100 °C min−1 in air and nitrogen atmospheres. The onset, peak and burnout temperatures and rates of decomposition of components were determined and compared to understand the combustion and pyrolysis kinetics of selected biomass materials using iso-conversional Kissinger-Akahira-Sunose (KAS) and Ozawa-Flynn-Wall (OFW) models. The kinetic parameters calculated were in turn used to calculate the changes in thermodynamic parameters, the enthalpy (ΔH), the Gibbs free energy (ΔG) and the entropy (ΔS). The physicochemical characterisation was carried out by elemental analyser and FTIR spectroscopy. The average activation energy values for RH were found to be 107.6 and 101.2 kJ mol−1 in air atmosphere and 85.5 and 92.1 kJ mol−1 in nitrogen atmosphere based on KAS and OFW models, respectively. The activation energy for DSD on the other hand was found to be 89.9 and 95.3 kJ mol−1 in air, 179.2 and 180.6 kJ mol−1 under nitrogen atmosphere based on KAS and OFW models, respectively. The heating values of the two biomasses (~ 10 to16 MJ kg−1) and Gibbs free energy values (between 165 to 176 kJ mol−1) indicate that the selected biomass can not only prove to be potential feedstock for pyrolysis but also can become a useful source of energy and chemicals.


2014 ◽  
Vol 960-961 ◽  
pp. 442-446
Author(s):  
Lin Chen ◽  
Shu Zhong Wang ◽  
Zhi Qiang Wu ◽  
Hai Yu Meng ◽  
Jun Zhao

Wood-based materials from Municipal Solid Waste have the potential of covering a significant part of the future demand on gasification capacities. However, their pyrolysis kinetics and gasification behavior has not yet been fully investigated. This paper describes the pyrolysis characteristics of typing paper and Chinese parasol from municipal solid waste applying the non-isothermal thermogravimetric analysis, the apparent activation energy and the pre-exponential factor were obtained by kinetics analysis at the heating rate of 10/20/40 oC•min-1.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1451
Author(s):  
Soyoung Han ◽  
Yong-Chul Jang ◽  
Yeon-Seok Choi ◽  
Sang-Kyu Choi

The separated and sorted combustibles from automobile shredder residue (ASR) can be pyrolyzed and used as a heat source or liquefied to produce materials with added value. In this study, the thermal decomposition properties of ASR were determined and thermal kinetic studies were performed. Four types of raw materials were separated from ASR and mixed at a constant ratio: 38.5 wt.% of plastic; 31.6 wt.% of fiber; 17.3 wt.% of sponge; and 12.3 wt.% of rubber. Pyrolysis kinetics analysis was carried out using the Thermogravimetric analysis-derivative thermogravimetry (TGA-DTG) technique and activation energy were calculated by differential and integral isoconversional model methods, Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), and Friedman. Thermogravimetric analysis was performed under nitrogen with four temperature rate conditions from room temperature to 800 °C. In the thermal degradation profile, peaks representing mass loss rates were observed for each sample at different temperature ranges. It was observed that the final mass reduction temperature in the mixed samples was lower than in the individual samples. The activation energies of plastics and rubbers were 105.39 kJ/mol and 115.20 kJ/mol respectively. The sponge foams and fibers were 172.59 kJ/mol and 160.30 kJ/mol respectively. The mixed sample had an activation energy value of 159.56 kJ/mol. The basic physicochemical and pyrolysis characteristics of ASR were examined to be used as basic data for the recycling of ASR for future pyrolysis.


2015 ◽  
Vol 4 (3) ◽  
pp. 153-176 ◽  
Author(s):  
Alexis Bonnet ◽  
Fathi Dkhil ◽  
Elisabeth Logak

AbstractWe consider a condensed phase (or solid) combustion model and its linearization around the travelling front solution. We construct an Evans function to characterize the eigenvalues of the linearized problem. We estimate this functional in the high activation energy limit. We deduce the existence of zeros with nonnegative real part for high activation energy, which proves the linear instability of the travelling front solution.


2013 ◽  
Vol 805-806 ◽  
pp. 265-268 ◽  
Author(s):  
Fang Ming Cui ◽  
Xiao Yuan Zhang ◽  
Li Min Shang

Thermogravimetric analysis (TGA) was employed to study the pyrolysis characteristics of four glucose-based and three fructose-based carbohydrates. Kinetic parameters were calculated based on the experiment data. The results indicated that the starting and maximal pyrolysis temperatures of the glucose-based carbohydrates were increased steadily as the rising of their degree of polymerization (DP). The fructose-based carbohydrates exhibited similar pyrolysis behaviors as the glucose-based carbohydrates, but the difference was smaller. Kinetic calculations revealed that the activation energy values of the glucose-based carbohydrates were higher than those of the fructose-based carbohydrates, indicating the glucose-based carbohydrates were more difficult to decompose than the fructose-based carbohydrates.


Author(s):  
D. A. Kessler ◽  
V. N. Gamezo ◽  
E. S. Oran

The propagation of detonations through several fuel–air mixtures with spatially varying fuel concentrations is examined numerically. The detonations propagate through two-dimensional channels, inside of which the gradient of mixture composition is oriented normal to the direction of propagation. The simulations are performed using a two-component, single-step reaction model calibrated so that one-dimensional detonation properties of model low- and high-activation-energy mixtures are similar to those observed in a typical hydrocarbon–air mixture. In the low-activation-energy mixture, the reaction zone structure is complex, consisting of curved fuel-lean and fuel-rich detonations near the line of stoichiometry that transition to decoupled shocks and turbulent deflagrations near the channel walls where the mixture is extremely fuel-lean or fuel-rich. Reactants that are not consumed by the leading detonation combine downstream and burn in a diffusion flame. Detonation cells produced by the unstable reaction front vary in size across the channel, growing larger away from the line of stoichiometry. As the size of the channel decreases relative to the size of a detonation cell, the effect of the mixture composition gradient is lessened and cells of similar sizes form. In the high-activation-energy mixture, detonations propagate more slowly as the magnitude of the mixture composition gradient is increased and can be quenched in a large enough gradient.


2007 ◽  
Vol 27 (11) ◽  
pp. 3295-3299 ◽  
Author(s):  
A. Morales-Rodríguez ◽  
D. Gómez-García ◽  
T. Rodriguez-Suarez ◽  
S. Lopez-Esteban ◽  
C. Pecharroman ◽  
...  

e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiangbo Wang ◽  
Zhong Xin

AbstractThe thermal degradation behaviors of PC/PMPSQ (polymethylphenylsilsesquioxane) systems were investigated by thermogravimetric analysis (TGA) under non-isothermal conditions in nitrogen atmosphere. During non-isothermal degradation, Kissinger and Flynn-Wall-Ozawa methods were used to analyze the thermal degradation process. The results showed that a remarkable decrease in activation energy ( E ) was observed in the early and middle stages of thermal degradation in the presence of PMPSQ, which indicated that the addition of PMPSQ promoted the thermal degradation of PC. Flynn-Wall-Ozawa method further revealed that PMPSQ significantly increased the activation energy of PC thermal degradation in the final stage, which illustrated that the PMPSQ stabilized the char residues and improved the flame retardancy of PC in the final period of thermal degradation process


Sign in / Sign up

Export Citation Format

Share Document