scholarly journals Effect of Axial In-Situ Stress in Deep Tunnel Analysis Considering Strain Softening and Dilatancy

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1502
Author(s):  
Kang Yi ◽  
Zhenghe Liu ◽  
Zhiguo Lu ◽  
Junwen Zhang ◽  
Shuangyong Dong

In many previous tunnel analyses, the axial in-situ stress was ignored. In this work, its effect on the deformation and failure of the surrounding rock of a deep tunnel was revealed, considering the objective strain softening and dilatancy behavior of the surrounding rock. Analysis based on the incremental plastic flow theory was conducted, and C++ was used to write a constitutive model for numerical simulation to verify and further analyze this effect. Then, the results were validated by the field monitoring data of a coal mine gateway. Results show that the effect of the axial in-situ stress σa0 is more significant when strain softening is considered, compared with the results of a perfectly elastoplastic model. When the axial stress σa is σ1 or σ3 at the initial yield, an increase or decrease in σa0 intensifies the deformation and failure of the surrounding rock. When σa is σ2 at the initial yield, 3D plastic flow partly controlled by σa may occur, and an increase in σa0 intensifies the deformation and failure of the surrounding rock. The effect of σa0 will be amplified by considering dilatancy. Considering both strain softening and dilatancy, when σa0 is close to the tangential in-situ stress σt0 or significantly greater than σt0 (1.5 times), σa will be σ2 or σ1 at the initial yield, and then 3D plastic flow will occur. In the deformation prediction and support design of a deep tunnel, σa0 should not be ignored, and the strain softening and dilatancy behavior of the surrounding rock should be accurately considered.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Haian Liang ◽  
Tan Tang ◽  
Longpeng Zhang ◽  
Xiaodong Liu ◽  
Shuai Liu ◽  
...  

This paper focuses on the stability of the high-level radioactive waste (HLW) in the proposed clay rock in Tamusu area of China. The in-situ stress as well as the variational characteristics of ambient temperature caused by nuclide decay during HLW storage should be noticeable. A series of thermal property tests and thermo-mechanical coupled strength (T-M) tests of rock samples in the target formation are carried out. Then the stability of surrounding rock of an HLW under the combination of heat release from HLW and in-situ stress is simulated and analyzed by numerical method. Thermal properties of Tamusu clay rock samples are obtained by testing their thermal conductivity. In order to obtain the characteristics and the failure modes of rock samples at different temperatures, the T-M coupling experiments in the temperature range of 100°C are conducted. Numerical model for simulating the state of operation of the nuclear waste tank buried in the tunnel within 100 years is constructed. A thermal boundary by the heat release equation of HLW and the real in-situ stress level in Tamusu area are considered in the model. While, the variation law of surrounding rock’s temperature, stress, and deformation corresponding to the embedding time is obtained from the numerical calculation. Finally, the stability of the deep geological repository is comprehensively evaluated. The results show that the temperature has a significant impact on the T-M coupling characteristics of Tamusu clay rock, and the proposed repository numerical model has no large deformation and failure problems in 100 years. However, the temperature of the surrounding rock of the repository may exceed the safety standard value during the operation period.


Author(s):  
Sheng Luo ◽  
Peng Yan ◽  
Wen-Bo Lu ◽  
Ming Chen ◽  
Gao-Hui Wang ◽  
...  

2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhongcheng Qin ◽  
Bin Cao ◽  
Yongle Liu ◽  
Tan Li

In situ stress is the direct cause of roadway deformation and failure in the process of deep mining activities. The measured data of in situ stress in the Shuanghe coal mine show that the maximum principal stress is 44.94~50.61 MPa, and the maximum principal stress direction is near horizontal direction, which belongs to tectonic stress field. The maximum horizontal principal stress is 1.66~1.86 of the vertical stress. The horizontal principal stress controls the deep stress field. According to the measured data of in situ stress, the high-strength prestress bolt and cable collaborative support form is designed in the Shuanghe coal mine. Based on the stress field research of bolt and cable, the optimal prestress ratio of bolt and cable is proposed as 3. When the prestress ratio of bolt and cable is constant, the smaller the length ratio of bolt and cable is, the better the effect of prestressed field formed by cooperative support is. The results are applied to the support design of the mining roadway in the Shuanghe coal mine. Through the field monitoring test results, it is found that the maximum roof subsidence is 86 mm, the maximum floor deformation is 52 mm, and the maximum deformation of two sides is 125 mm. The surrounding rock control effect of the roadway is good, and the surrounding rock deformation conforms to the engineering technology standard requirements. The research results of this paper can provide some reference for the surrounding rock support of high ground stress mining roadway under similar conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
MingZheng Zhu ◽  
Yugui Yang ◽  
Feng Gao ◽  
Juan Liu

The deformation and failure of tunnel surrounding rock is the result of tunnel excavation disturbance and rock stress release. When the local stress of surrounding rock exceeds the elastic limit of rock mass, the plastic analysis of surrounding rock must be carried out to judge the stability of tunnel. In this study, the Lade–Duncan yield criterion is used to calculate the analytic solutions for the surrounding rock in a tunnel, and the radius and displacement of the plastic zone are deduced using an equilibrium equation. The plastic zone radius and displacement based on Lade–Duncan criterion and Mohr–Coulomb criterion were compared by using single-factor analysis method under the different internal friction angles, in situ stresses, and support resistances. The results show that the solutions of the radius and displacement of plastic zone calculated by the Lade–Duncan criterion are close to those of Mohr–Coulomb criterion under the high internal friction angle and support resistance or low in situ rock stress; however, the radius and displacement of the plastic zone calculated by the Lade–Duncan criterion are larger under normal circumstances, and the Lade–Duncan criterion is more applicable to the stability analysis of the surrounding rock in a tunnel.


1991 ◽  
Vol 28 (5) ◽  
pp. 650-659 ◽  
Author(s):  
Vinod K. Garga ◽  
Mahbubul A. Khan

Most of the laboratory testing methods available for the evaluation of in situ horizontal stresses are applicable to normally consolidated or lightly overconsolidated clays. This paper describes a new laboratory method for the determination of in situ horizontal stresses of heavily overconsolidated clays using a stress-path triaxial apparatus. The proposed method is based on the concept that if the radial stress exceeds the in situ horizontal stress, while maintaining the axial stress constant and equal to the in situ vertical effective stress, only then will the sample experience significant axial strain. The results obtained for undisturbed samples of an overconsolidated clay crust are found to be in agreement with some available methods. For verification of the applicability of the proposed method, K0 was determined for artificially prepared samples that had been subjected to known stress paths simulating field stress history. Key words: K0, overconsolidation, in situ stress, in situ test, clay crust, laboratory test.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jing Yang ◽  
Xing-Guo Yang ◽  
Jia-Wen Zhou ◽  
Yong Liu ◽  
Bao-Shun Dong ◽  
...  

The rock mass failure induced by high in-situ stresses during the excavation of deep diversion tunnels is one of the key problems in the construction of the Jinping II Hydropower Station. Based on the results of acoustic wave tests and rockburst statistical analysis conducted, this study focuses on the excavation damaged zone (EDZ) and rockburst events in the Jinping II diversion tunnels excavated using the tunnel boring machine (TBM) method and the drilling-blasting method. The unloading failure mechanism and the rockburst induced by the two different excavation methods were compared and analyzed. The results indicate that, due to the different stress adjustment processes, the degree of damage to the surrounding rock mass excavated using the drilling-blasting method was more serious than that using the TBM method. The EDZ induced by the TBM was usually distributed evenly along the edge of the excavation surface. While, the drilling-blasting method was more likely to cause stress concentration, resulting in a deeper EDZ in local areas. However, the TBM excavation method can cause other problems in high in-situ stress areas, such as strong rockbursts. The drilling-blasting method is more prone to structural controlled failure of the surrounding rock mass, while the TBM method would induce high stress concentration near the edge of excavation and more widely distributed of stress adjustment induced failure. As a result, the scale and frequency of the rockburst events generated by the TBM were significantly greater than those caused by the drilling-blasting method during the excavation of Jinping II diversion tunnels. The TBM method should be used carefully for tunnel excavation in high in-situ stress areas with burial depths of greater than 2000 m. If it is necessary to use the TBM method after a comprehensive selection, it is suggested that equipment adaptability improvement, advanced prediction, and prediction technology be used.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xiaoqian Zhang ◽  
Chengmin Wei ◽  
Heng Zhang

The secondary lining failure of deep buried soft rock tunnel often occurs, which is obviously related to the time factor. The formation mechanism of this phenomenon is studied in this paper. Therefore, the combination of in situ stress measurement and neural network inversion is used to analyze the distribution characteristics of in situ stress. At the same time, the creep characteristics of surrounding rock are tested in laboratory, and the key parameters are obtained. Combined with the characteristics of surrounding rock, the calculation model is established by using discrete element simulation technology and considering the joints of surrounding rock. According to the above multiple information, the stress characteristics of the secondary lining in different time periods are analyzed creatively. Finally, the method of setting arch and adding anchor bolt in key parts is proposed, and significant effect results are obtained.


Sign in / Sign up

Export Citation Format

Share Document