scholarly journals Dual-Inverter-Controlled Brushless Operation of Wound Rotor Synchronous Machines Based on an Open-Winding Pattern

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2205 ◽  
Author(s):  
Syed Sabir Hussain Bukhari ◽  
Ghulam Jawad Sirewal ◽  
Faheem Akhtar Chachar ◽  
Jong-Suk Ro

In an open-winding machine, three-phase stator currents can be controlled such that the input armature currents may contain the third-harmonic current component in addition to the fundamental. Considering this attribute of open-winding patterns, a harmonic current field excitation technique for a wound rotor synchronous machine (WRSM) is proposed in this paper based on the control of time-harmonic magneto-motive force. Two inverters connected to both terminals of the stator winding are controlled so that the input armature current generates an additional third-harmonic current component. This third-harmonic component generates a vibrating magnetic field that induces a current in the specially designed rotor harmonic winding. The current is supplied as DC current to the rotor excitation winding to generate a rotor field by using a full-bridge diode rectifier in order to achieve brushless operation. The proposed dual-inverter-controlled brushless operation for a WRSM is executed in ANSYS Maxwell using 2-D finite element analysis to validate its operation and electromagnetic performance.

2020 ◽  
Vol 10 (17) ◽  
pp. 5866
Author(s):  
Syed Sabir Hussain Bukhari ◽  
Ghulam Jawad Sirewal ◽  
Faheem Akhtar Chachar ◽  
Jong-Suk Ro

A new harmonic field excitation technique for the brushless operation of wound field synchronous machines (WFSMs) is proposed in this paper. The proposed scheme involves conventional three-phase and single-phase inverters operating at different frequencies and supply input current to the armature winding simultaneously. This results in a composite output current of the inverters, which contains fundamental as well as the third harmonic current components. The fundamental is utilized to develop the stator field, on the other hand, the third harmonic is used for developing the pulsating magnetomotive force (MMF) in the airgap. This MMF produces a harmonic current in the harmonic winding of the rotor which is later rectified to inject field current to the rotor field winding. The theoretical analysis of the proposed technique is supported using 2-D finite element analysis (FEA).


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1721
Author(s):  
Syed Sabir Hussain Bukhari ◽  
Fareed Hussain Mangi ◽  
Irfan Sami ◽  
Qasim Ali ◽  
Jong-Suk Ro

This paper discusses the design and analysis of a high-harmonic injection-based field excitation scheme for the brushless operation of wound field synchronous machines (WFSMs) in order to achieve a higher efficiency. The proposed scheme involves two inverters. One of these inverters provides the three-phase fundamental-harmonic current to the armature winding, whereas the second inverter injects the single-phase high-harmonic i.e., 6th harmonic current in this case, to the neutral-point of the Y-connected armature winding. The injection of the high-harmonic current in the armature winding develops the high-harmonic magnetomotive force (MMF) in the air gap of the machine beside the fundamental. The high-harmonic MMF induces the harmonic current in the excitation winding of the rotor, whereas the fundamental MMF develops the main armature field. The harmonic current is rectified to inject the direct current (DC) into the main rotor field winding. The main armature and rotor fields, when interacting with each other, produce torque. Finite element analysis (FEA) is carried out in order to develop a 4-pole 24-slot machine and investigate it using a 6th harmonic current injection for the rotor field excitation to both attain a brushless operation and analyze its electromagnetic performance. Later on, the performance of the proposed topology is compared with the typical brushless WFSM topology employing the 3rd harmonic current injection-based field excitation scheme.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1165-1172
Author(s):  
Muhammad Ayub ◽  
Asif Hussain ◽  
Ghulam Jawad Sirewal ◽  
Byung-il Kwon

This manuscript proposes a wye-delta winding configuration for brushless operation of a wound field synchronous machine (BL-WFSM). In existing third harmonically excited BL-WFSM topologies, the additional third harmonic component of the stator magnetomotive force (MMF) was produced by an extra thyristor drive circuit or by utilizing an additional inverter. In the proposed single inverter topology, the stator winding is divided into two coil sets: the wye coil and delta coil. Triplen harmonic currents are produced owing to the delta coils set and start to circulate in the delta coils. This triplen harmonic circulating currents produce a triplen harmonic pulsating MMF in the airgap. The additional triplen harmonic pulsating MMF induces voltage in the rotor harmonic winding. This induced voltage in the harmonic winding is used to excite the rotor field. A 2D finite element analysis is performed, and the simulation results confirmed the operation principle of the proposed brushless topology.


2019 ◽  
Vol 102 (1) ◽  
pp. 259-265 ◽  
Author(s):  
Muhammad Ayub ◽  
Ghulam Jawad Sirewal ◽  
Syed Sabir Hussain Bukhari ◽  
Byung-il Kwon

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4427
Author(s):  
Syed Sabir Hussain Bukhari ◽  
Qasim Ali ◽  
Jesús Doval-Gandoy ◽  
Jong-Suk Ro

This paper presents a new high-efficient three-phase brushless wound rotor synchronous machine (BL-WRSM) based on a sub-harmonic field excitation technique. In the proposed machine topology, the stator is equipped with two different three-phase windings: (1) main armature winding, and (2) additional armature winding. The main armature winding is based on a 4-pole winding configuration, whereas the additional armature winding is based on a 2-pole winding configuration. Both windings are supplied current from two different inverters, i.e., inverter-1, inverter-2, and simultaneously. Inverter-1 provides the regular input current to the main armature winding, whereas inverter-2 provides a three-phase current of low magnitude to the 2-pole additional armature winding. This generates an additional sub-harmonic component of MMF in the airgap beside the fundamental MMF. On the other side, the rotor is equipped with (1) harmonic, and (2) field windings. These windings are electrically coupled via a rectifier. The fundamental component of MMF produces the main rotating magnetic field, whereas the sub-harmonic MMF gets induced in the harmonic winding to produce harmonic current. This current is rectified to give DC to the rotor field winding to attain brushless operation. To authenticate the operation and analyze its performance, the proposed BL-WRSM topology is supported using 2-D finite element analysis (FEA) in JMAG-Designer. Later on, the performance of the proposed brushless topology is compared with the customary BL-WRSM topology to verify its high efficiency, high output torque, low torque ripple, and low unbalanced radial force on the rotor.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1127-1134
Author(s):  
Ghulam Jawad Sirewal ◽  
Muhammad Ayub ◽  
Byung-il Kwon

This paper proposes a permanent magnet assisted brushless wound rotor synchronous machine (PMa–BL–WRSM) design. The proposed machine has the advantage of a high starting torque compared to existing BL–WRSM topologies. Additionally, the average torque increases and the torque ripple is reduced when the permanent magnet assisted machine structure is used. PMa–BL–WRSM operates on the principle of brushless excitation using zero-sequence, third-harmonic current generation in the stator windings. The third harmonic component is harnessed to induce a voltage in the harmonic winding which is mounted on the rotor. As there is no flux generated from filed winding in the starting, the starting torque of the machine is also zero. To overcome the problem, permanent magnets (PMs) are inserted in each field tooth to provide the initial source of flux on the rotor. Finite element analysis is performed with the PM–BL–WRSM, and the elicited results are compared with the basic machine structure. The proposed machine operation is verified using 2-D finite element analyses using the ANSYS Maxwell analysis tool.


2011 ◽  
Vol 464 ◽  
pp. 191-194
Author(s):  
Guo Hai Liu ◽  
Li Hao Yan ◽  
Duo Zhang ◽  
Wen Xiang Zhao

In this paper, a five-phase permanent-magnet (PM) brushless dc (BLDC) motor is investigated, which has almost trapezoidal back electromotive force(EMF) due to its concentrated windings. Since the third harmonic component in the magnetic field is utilized, the presented five-phase BLDC motors have a higher torque density over conventional three-phase ones, in which the third harmonic current is injected. This paper proposes a new five-phase transformation system, by which the vector control is easily applicable to five-phase BLDC motors. Finally, the results verify the validity of the proposed method.


2015 ◽  
Vol 9 (1) ◽  
pp. 591-599
Author(s):  
Ma Wenchuan ◽  
Zhitong Li ◽  
Chen Daochang ◽  
Qi Jiaming ◽  
Zhou Qiang ◽  
...  

For resolving the problem that power filter cannot work normally because TCR (thyristor controlled reactor) generates extra third harmonic current under asymmetrical voltage, the paper proposes the estimation method of current capacity that TCR generates extra third harmonic current under asymmetrical voltage. Considering extra third harmonic current under asymmetrical voltage, Optimum method based on genetic algorithm is used to design the parameters of power filter. With reactive power compensation and harmonic suppression project of a steel mill as example, the proposed method is simulated by Matlab. Simulation results show optimized power filter can eliminate extra third harmonic current effects under asymmetrical voltage, meet the requirement of reactive power compensation, reduce harmonics current that load injects into system, and guarantee the power filter safe operation under asymmetrical voltage.


Sign in / Sign up

Export Citation Format

Share Document