scholarly journals Demand Response Optimization Model to Energy and Power Expenses Analysis and Contract Revision

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2803 ◽  
Author(s):  
Filipe Marangoni ◽  
Leandro Magatão ◽  
Lúcia Valéria Ramos de Arruda

This paper proposes a mathematical model based on mixed integer linear programming (MILP). This model aids the decision-making process in local generation use and demand response application to power demand contract adequacy by Brazilian consumers/prosumers. Electric energy billing in Brazil has some specificities which make it difficult to consider the choice of the tariff modality, the determination of the optimal contracted demand value, and demand response actions. In order to bridge this gap, the model considers local generation connected to the grid (distributed generation) and establishes an optimized solution indicating power energy contract aspects and the potential reduction in expenses for the next billing period (12 months). Different alternative sources already available or of interest to the consumer can be considered. The proposed mathematical model configures an optimization tool for the feasibility analysis of local generation use and, concomitantly, (i) checking the tariff modality, (ii) revising the demand contract, and (iii) suggesting demand response actions. The presented result shows a significant reduction in the energy and power expenses, which confirms the usefulness of this proposal. In the end, the optimized answers promote benefits for both, the consumer/prosumer and the electric utility.

Author(s):  
Olexandr Pavlenko ◽  
Serhii Dun ◽  
Maksym Skliar

In any economy there is a need for the bulky goods transportation which cannot be divided into smaller parts. Such cargoes include building structures, elements of industrial equipment, tracked or wheeled construction and agricultural machinery, heavy armored military vehicles. In any case, tractor-semitrailer should provide fast delivery of goods with minimal fuel consumption. In order to guarantee the goods delivery, tractor-semitrailers must be able to overcome the existing roads broken grade and be capable to tow a semi-trailer in off-road conditions. These properties are especially important for military equipment transportation. The important factor that determines a tractor-semitrailer mobility is its gradeability. The purpose of this work is to improve a tractor-semitrailer mobility with tractor units manufactured at PJSC “AutoKrAZ” by increasing the tractor-semitrailer gradeability. The customer requirements for a new tractor are determined by the maximizing the grade to 18°. The analysis of the characteristics of modern tractor-semitrailers for heavy haulage has shown that the highest rate of this grade is 16.7°. The factors determining the limiting gradeability value were analyzed, based on the tractor-semitrailer with a KrAZ-6510TE tractor and a semi-trailer with a full weight of 80 t. It has been developed a mathematical model to investigate the tractor and semi-trailer axles vertical reactions distribution on the tractor-semitrailer friction performances. The mathematical model has allowed to calculate the gradeability value that the tractor-semitrailer can overcome in case of wheels and road surface friction value and the tractive force magnitude from the engine. The mathematical model adequacy was confirmed by comparing the calculations results with the data of factory tests. The analysis showed that on a dry road the KrAZ-6510TE tractor with a 80 t gross weight semitrailer is capable to climb a gradient of 14,35 ° with its coupling mass full use condition. The engine's maximum torque allows the tractor-semitrailer to overcome a gradient of 10.45° It has been determined the ways to improve the design of the KrAZ-6510TE tractor to increase its gradeability. Keywords: tractor, tractor-semitrailer vehicle mobility, tractor-semitrailer vehicle gradeability.


2020 ◽  
Vol 67 (1) ◽  
pp. 142-147
Author(s):  
Alina A. Aleksandrova ◽  
Maksim S. Zhuzhin ◽  
Yuliya M. Dulepova

Energy saving today is an integral part of the development strategy of agricultural organizations. Considerable attention is paid to the modernization and automation of technological processes in agricultural enterprises, which can improve the quality of work and reduce the cost of production. The direction of modernization is to reduce the consumption of electric energy by improving the water treatment system in livestock complexes. (Research purpose) The research purpose is to determine the potential of solar energy used in the Nizhny Novgorod region and to determine the possibility of its use for water heating in livestock complexes and to consider the cost-effectiveness of using a device to heat water through solar energy. (Materials and methods) Authors used an improved algorithm of Pixer and Laszlo, applied in the NASA project «Surface meteorology and Energy», which allows to calculate the optimal angle of inclination of the device for heating water. (Results and discussion) Designed a mock-up of a livestock complex with a solar water heater installed on the roof, protected by patent for invention No. 2672656. A mathematical model was designed experimentally to predict the results of the plant operation in non-described modes. (Conclusions) The article reveales the optimal capacity of the circulation pump. Authors have created a mathematical model of the device that allows to predict the water heating in a certain period of time. The article presents the calculations on the energy and economic efficiency of using a solar water heater. An electric energy saving of about 30 percent, in the economic equivalent of 35 percent.


Author(s):  
Yang Jie ◽  
Li Haitao ◽  
Rui Chengjie ◽  
Wei Wenjun ◽  
Dong Xuezhu

All of the cutting edges on an hourglass worm gear hob have different shapes and spiral angles. If the spiral angles are small, straight flutes are usually adopted. But for the hob with multiple threads, the absolute values of the negative rake angles at one side of the cutting teeth will greatly affect the cutting performance of the hob if straight flutes are still used. Therefore, spiral flutes are usually adopted to solve the problem. However, no method of determination of the spiral flute of the hourglass worm gear hob has been put forward till now. Based on the curved surface generating theory and the hourglass worm forming principle, a generating method for the spiral flute of the planar double enveloping worm gear hob is put forward in this paper. A mathematical model is built to generate the spiral flute. The rake angles of all cutting teeth of the hob are calculated. The laws of the rake angles of the cutting teeth of four hobs with different threads from one to four threads are analyzed when straight flutes and spiral flutes are adopted respectively. The laws between the value of the negative rake angles of the hob with four threads and the milling transmission ratio are studied. The most appropriate milling transmission ratio for generating the spiral flute is obtained. The machining of the spiral flutes is simulated by a virtual manufacturing system and the results verify the correctness of the method.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Amirreza Hooshyar Telegraphi ◽  
Akif Asil Bulgak

AbstractDue to the stringent awareness toward the preservation and resuscitation of natural resources and the potential economic benefits, designing sustainable manufacturing enterprises has become a critical issue in recent years. This presents different challenges in coordinating the activities inside the manufacturing systems with the entire closed-loop supply chain. In this paper, a mixed-integer mathematical model for designing a hybrid-manufacturing-remanufacturing system in a closed-loop supply chain is presented. Noteworthy, the operational planning of a cellular hybrid manufacturing-remanufacturing system is coordinated with the tactical planning of a closed-loop supply chain. To improve the flexibility and reliability in the cellular hybrid manufacturing-remanufacturing system, alternative process routings and contingency process routings are considered. The mathematical model in this paper, to the best of our knowledge, is the first integrated model in the design of hybrid cellular manufacturing systems which considers main and contingency process routings as well as reliability of the manufacturing system.


2020 ◽  
Vol 1006 ◽  
pp. 93-100
Author(s):  
Vadym Nizhnyk ◽  
Yurii Feshchuk ◽  
Volodymyr Borovykov

Based on analysis of appropriate literary sources we established that estimation of fire separation distances was based of two criteria: heat flux and temperature. We proposed to use “ignition temperature of materials” as principal criterion when determining fire separation distances between adjacent construction facilities. Based on the results derived while performing complete factorial we created mathematical model to describe trend of changing fire separation distances depending on caloric power of fire load (Q), openings factor of the external enclosing structures (k) and duration of irradiation (t); moreover, its adequacy was confirmed. Based on linear regression equations we substantiated calculation and tabular method for the determination of fire separation distances for a facility being irradiated which contains combustible or otherwise non-combustible façade and a facility where liquid oil products turn. We developed and proposed general methodology for estimation of fire separation distances between construction facilities by calculation.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ji-ting Qu ◽  
Hong-nan Li

A new optimal method is presented by combining the weight coefficient with the theory of force analogy method. Firstly, a new mathematical model of location index is proposed, which deals with the determination of a reasonable number of dampers according to values of the location index. Secondly, the optimal locations of dampers are given. It can be specific from stories to spans. Numerical examples are illustrated to verify the effectiveness and feasibility of the proposed mathematical model and optimal method. At last, several significant conclusions are given based on numerical results.


Sign in / Sign up

Export Citation Format

Share Document