scholarly journals A Chronological Literature Review of Electric Vehicle Interactions with Power Distribution Systems

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 3016
Author(s):  
Andrés Arias-Londoño ◽  
Oscar Danilo Montoya ◽  
Luis Fernando Grisales-Noreña

In the last decade, the deployment of electric vehicles (EVs) has been largely promoted. This development has increased challenges in the power systems in the context of planning and operation due to the massive amount of recharge needed for EVs. Furthermore, EVs may also offer new opportunities and can be used to support the grid to provide auxiliary services. In this regard, and considering the research around EVs and power grids, this paper presents a chronological background review of EVs and their interactions with power systems, particularly electric distribution networks, considering publications from the IEEE Xplore database. The review is extended from 1973 to 2019 and is developed via systematic classification using key categories that describe the types of interactions between EVs and power grids. These interactions are in the framework of the power quality, study of scenarios, electricity markets, demand response, demand management, power system stability, Vehicle-to-Grid (V2G) concept, and optimal location of battery swap and charging stations.

Author(s):  
Reza Tajik

Nowadays, the utilization of renewable energy resources in distribution systems (DSs) has been rapidly increased. Since distribution generation (DG) use renewable resources (i.e., biomass, wind and solar) are emerging as proper solutions for electricity generation. Regarding the tremendous deployment of DG, common distribution networks are undergoing a transition to DSs, and the common planning methods have become traditional in the high penetration level. Indeed, in conformity with the voltage violation challenge of these resources, this problem must be dealt with too. So, due to the high penetration of DG resources and nonlinear nature of most industrial loads, the planning of DG installation has become an important issue in power systems. The goal of this paper is to determine the planning of DG in distribution systems through smart grid to minimize losses and control grid factors. In this regard, the present work intending to propose a suitable method for the planning of DSs, the key properties of DS planning problem are evaluated from the various aspects, such as the allocation of DGs, and planning, and high-level uncertainties. Also depending on these analyses, this universal literature review addressed the updated study associated with DS planning. In this work, an operational design has been prepared for a higher performance of the power distribution system in the presence of DG. Artificial neural network (ANN) has been used as a method for voltage monitoring and generation output optimization. The findings of the study show that the proposed method can be utilized as a technique to improve the process of the distribution system under various penetration levels and in the presence of DG. Also, the findings revealed that the optimal use of ANN method leads to more controllable and apparent DS.


2018 ◽  
Author(s):  
◽  
Adeniyi Kehinde Onaolapo

Electrical power systems experience unforeseen faults attributable to diverse arbitrary reasons. Unanticipated failures occurring in power systems are to be prevented from propagating to other parts of the protective system to enhance economic efficacy of electric utilities and provide better service to energy consumers. Since most consumers are directly connected to power distribution networks, there is an increasing research efforts in distribution network fault recognition and fault-types identifications to solve the problem of outages due to faults. This study focuses on fault recognition and fault-types identification in electrical power distribution system based on the Design Science Research (DSR) approach. Diverse simulations of fault types at different locations were applied to the IEEE 13 Node Test Feeder to produce three phase currents and voltages as data set for this study. This was realized by modelling the IEEE 13-node benchmark test feeder in MATLAB-Simulink R2017a. In order to achieve intelligent fault recognition and fault-type identification, different Multi-layer Perceptron Artificial Neural Networks (MLP-ANN) models were designed and subsequently trained using the generated dataset with the Neural Network toolbox in MATLAB R2017a. The fault recognition task verifies if a fault occurs or not while the fault-types identification task determines the fault class as well as the faulty phase(s). Results obtained from the various MLP-ANN models were recorded and statistically analyzed. Acceptable performances were obtained for fault recognition with the 6-25-20-15-1 MLP-ANN architecture, for fault-types identification with the 6-40-4 MLP-ANN architecture and for fault location with the 6-30-15-5-4 MLP-ANN architecture. Given the result obtained in this study, MLP-ANN is adjudged suitable for intelligent fault recognition and fault-types identification in power distribution systems. The trained MLP-ANNs in this study could ultimately be incorporated in power distribution networks within South Africa and beyond in order to enhance energy customers’ satisfaction.


Author(s):  
Tanmay Jain ◽  
Debomita Ghosh ◽  
Dusmanta Kumar Mohanta

AbstractPower distribution systems are profoundly inclined to disturbances like untimely switching of breakers & relays, sympathetic tripping, and uncertainties regarding fault location. Thus, system stability and reliability are greatly affected. In this way, situational awareness and system integrity are the crucial factors in developing power system security, as it empowers successful decision making & timely reaction by the operators to any disturbance and also maintaining continuity of power supply. This paper focuses on the enhancement of situational awareness by fault location through fault passage indicators (FPI) to improve nominal impedance-based methods in distribution networks. Also, the proposed method is validated by comparing it with Intelligent Electronic Device (IED) based fault location method. Further, simultaneous reconfiguration of the system is incorporated to maintain the continuity of supply. The analysis has been tested on IEEE 33 bus distribution system.


Mathematics ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 158
Author(s):  
Farzaneh Pourahmadi ◽  
Payman Dehghanian

Allocation of the power losses to distributed generators and consumers has been a challenging concern for decades in restructured power systems. This paper proposes a promising approach for loss allocation in power distribution systems based on a cooperative concept of game-theory, named Shapley Value allocation. The proposed solution is a generic approach, applicable to both radial and meshed distribution systems as well as those with high penetration of renewables and DG units. With several different methods for distribution system loss allocation, the suggested method has been shown to be a straight-forward and efficient criterion for performance comparisons. The suggested loss allocation approach is numerically investigated, the results of which are presented for two distribution systems and its performance is compared with those obtained by other methodologies.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1090
Author(s):  
Charilaos Latinopoulos ◽  
Aruna Sivakumar ◽  
John W. Polak

The recent revolution in electric mobility is both crucial and promising in the coordinated effort to reduce global emissions and tackle climate change. However, mass electrification brings up new technical problems that need to be solved. The increasing penetration rates of electric vehicles will add an unprecedented energy load to existing power grids. The stability and the quality of power systems, especially on a local distribution level, will be compromised by multiple vehicles that are simultaneously connected to the grid. In this paper, the authors propose a choice-based pricing algorithm to indirectly control the charging and V2G activities of electric vehicles in non-residential facilities. Two metaheuristic approaches were applied to solve the optimization problem, and a comparative analysis was performed to evaluate their performance. The proposed algorithm would result in a significant revenue increase for the parking operator, and at the same time, it could alleviate the overloading of local distribution transformers and postpone heavy infrastructure investments.


2021 ◽  
Vol 3 (27) ◽  
pp. 101-115
Author(s):  
Massoud Danishmal ◽  

The design of power distribution systems should be such that it can technically respond to the increase in electricity demand properly and economically, optimally designed and high network reliability. In order to respond to the increase in electricity demand, load forecasting must be done so that in addition to providing the electricity needed by customers, expansion of power generation centers, expansion of substations, expansion of transformer stations and selection of their appropriate location can be done optimally. In this article, we first examine the definitions and factors that are technically and economically effective in the economic design of energy distribution systems. And in the next stage, we will see whether these above-mentioned effective factors are considered in the 0.4 kV distribution network of Ghazni city or not.


2014 ◽  
Vol 960-961 ◽  
pp. 1588-1591
Author(s):  
Xiang Dong Zhao ◽  
Xin Zhao ◽  
Ming Jun Lv ◽  
Jian Guo Liu ◽  
Feng Zhen Liu ◽  
...  

The Internet and the gradual implementation of the continuous power grid market in recent years make the power system more complex under different operating environment. Safe and stable operation of power grids have become increasingly important . With the rapidf development of the grid and constant innovation, safe and stable operation also has a new requirement , because the rapid development of the power system brings more This paper analyzes the causes of blackouts and reviews security of the power system stability problems related to measures on the security and stability of the power system operation .


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3202
Author(s):  
Alberto Escalera ◽  
Edgardo D. Castronuovo ◽  
Milan Prodanović ◽  
Javier Roldán-Pérez

Modern power distribution networks assume the connection of Distributed Generators (DGs) and energy storage systems as well as the application of advanced demand management techniques. After a network fault these technologies and techniques can contribute individually to the supply restoration of the interrupted areas and help improve the network reliability. However, the optimal coordination of control actions between these resources will lead to their most efficient use, maximizing the network reliability improvement. Until now, the effect of such networks with optimal coordination has not been considered in reliability studies. In this paper, DGs, energy storage and demand management techniques are jointly modelled and evaluated for reliability assessment. A novel methodology is proposed for the calculation of the reliability indices. It evaluates the optimal coordination of energy storage and demand management in order to reduce the energy-not-supplied during outages. The formulation proposed for the calculation of the reliability indices (including the modelling of optimal coordination) is described in detail. The methodology is applied to two distribution systems combining DGs, energy storage and demand management. Results demonstrate the capability of the proposed method to assess the reliability of such type of networks and emphasise the impact of the optimal coordination on reliability.


2019 ◽  
Vol 9 (3) ◽  
pp. 582 ◽  
Author(s):  
Hasan Gelani ◽  
Faizan Dastgeer ◽  
Kiran Siraj ◽  
Mashood Nasir ◽  
Kamran Niazi ◽  
...  

The paper investigates the system efficiency for power distribution in residential localities considering daily load variations. Relevant system modeling is presented. A mathematical model is devised, which is based on the data from the Energy Information Administration (EIA), USA, for analysis. The results reveal that the DC distribution system can present an equivalent or even better efficiency compared to the AC distribution network with an efficiency advantage of 2.3%, averaged over a day. Furthermore, the distribution systems are compared under various capacities of solar PV accounting for the effect of variation in solar irradiation over time.


2014 ◽  
Vol 24 (01) ◽  
pp. 1550009 ◽  
Author(s):  
Xiaodao Chen ◽  
Shiyan Hu

Growing concerns on the energy crisis impose great challenges in development and deployment of the smart grid technologies into the existing electrical power system. A key enabling technology in smart grid is distributed generation, which refers to the technology that power generating sources are located in a highly distributed fashion and each customer is both a consumer and a producer for energy. An important optimization problem in distributed generation design is the insertion of distributed generators (DGs), which are often renewable resources exploiting e.g., photovoltaic, hydro, wind, ocean energy. In this paper, a new power loss filtering based sensitivity guided cross entropy (CE) algorithm is proposed for the distributed generator insertion problem. This algorithm is based on the advanced CE optimization technique which exploits the idea of importance sampling in performing optimization. Our experimental results demonstrate that on large distribution networks, our algorithm can largely reduce (up to 179.3%) power loss comparing to a state-of-the-art sensitivity guided greedy algorithm with small runtime overhead. In addition, our algorithm runs about 5× faster than the classical CE algorithm due to the integration of power loss filtering and sensitivity optimization. Moreover, all existing techniques only test on very small distribution systems (usually with < 50 nodes) while our experiments are performed on the distribution networks with up to 5000 nodes, which matches the realistic setup. These demonstrate the practicality of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document