scholarly journals Numerical Study of the Double Diffusion Natural Convection inside a Closed Cavity with Heat and Pollutant Sources Placed near the Bottom Wall

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3085
Author(s):  
Juan Serrano-Arellano ◽  
Juan M. Belman-Flores ◽  
Jesús Xamán ◽  
Karla M. Aguilar-Castro ◽  
Edgar V. Macías-Melo

A study was conducted on the double diffusion by natural convection because of the effects of heat and pollutant sources placed at one third of the closed cavity’s height. The heat and pollution sources were analyzed separately and simultaneously. The study was considered for the Rayleigh number interval 10 4   ≤   R a   ≤   10 10 . Three case studies were analyzed: (1) differentially heated closed cavity with only heat sources; (2) differentially heated closed cavity with only pollutant sources; and (3) differentially heated closed cavity with heat and pollutant sources. The governing equations of the system were solved through the finite volume technique. The turbulence solution was done with the k-ε model. The dominant influence of the buoyancy forces was found due to the pollutant diffusion on the flow pattern, and an internal temperature increase was observed with the simple diffusion. The most critical case was obtained through the double diffusive convection with an average temperature value of 32.57 °C. Finally, the Nusselt number increased as the Rayleigh number increased; however, the Sherwood number either increased or decreased when the Rayleigh number increased. The highest mean concentration recorded was 2808 ppm; this was found with the value R a = 10 6 .

2005 ◽  
Author(s):  
Arnout Willockx ◽  
Christophe Tjoen ◽  
Hendrik-Jan Steeman ◽  
Michel De Paepe

In this paper, a numerical study of natural convection from a disk is presented. The disk is placed vertically in a closed cavity (cylinder) and has a constant heat flux. Different numerical simulations of this test case are executed at various gravity accelerations (=g) inside the cavity. The accelerations are varied from 9.81 m/s2 to 53 m/s2. The Rayleigh number changes with these accelerations. The flow pattern and the temperature distribution inside the cavity are visualized. For natural convection inside a cavity, a vortex is expected in the air flow: a plume of warm rising air at the centre of the cylinder above the heated square disk and descending colder air at the walls of the cavity. The air velocity is higher in the central plume. At w = 9.81 m/s2, the maximum air velocity is 0.05 m/s. This velocity increases with increasing acceleration w till 0.6 m/s at w = 53 m/s2. At low w, the flow pattern exists of a stable vortex and thus a steady-state flow. At w = 15 m/s2, the vortex becomes more unstable and is swirling. At w = 27 m/s2, the vortex is even more swirling and the following periodical phenomenon takes place: first the vortex starts to dissolve in a small vortex at the top of the cylinder and a vortex below this around the square disk. Then, the lower vortex starts to increase again and the upper vortex is fading. So there is again one big vortex with a central, unstable plume that reaches the top of the cylinder. After a few seconds, the plume dissolves again. This phenomenon has no constant period. The higher w, the faster this phenomenon happens and thus the shorter the period. At w = 53m/s2, the vortex seems more turbulent than laminar, however the Rayleigh number is still in the laminar range (Ra<106). The numerical simulations are verified with existing correlations. There was a good agreement between correlations and numerical simulation.


Author(s):  
Mohamed Haddar ◽  
Moez Hammami ◽  
Mounir Baccar

In this paper, a study of cooling system for a liquefied natural gas storage tank is conducted. Our objective is to remedy the heat ingress to the liquefied natural gas from the environment using baffles toward limiting temperature elevation in the tank, and then the Boil-off Gas (BOG) formation. A specific code based on the finite volume method is developed to supply a fine knowledge of the hydrodynamic and thermal liquefied natural gas characteristics in the cylindrical tank heated from bottom and lateral surfaces. The effect of the number, position and dimension of baffles, on the flow structure and thermal behavior, has been analyzed. According to our simulation results, the baffles should be placed at the top of tank nearby the lateral wall as the liquefied natural gas dimensionless average temperature can be reduced by 36%. The installation of four rectangular baffles, equally spaced around the perimeter of the tank, gives better homogenization of the temperature field and decreases the average temperature by about 44% in order to limit BOG formation. Finally, two correlations of the Nusselt number are established for the flat rectangular baffle plates and the lateral surface of the cylindrical liquefied natural gas storage tank as a function of the Rayleigh number, as well as the baffle number. Scaling of these correlations with the Rayleigh number gives exponents of 0.25 and 0.18 for lateral surface and baffle, respectively, which are in good agreement with literature.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Amin Bouraoui ◽  
Rachid Bessaïh

In this paper, a numerical study of three-dimensional (3D) natural convection air-cooling of two identical heat sources, simulating electronic components, mounted in a rectangular enclosure was carried out. The governing equations were solved by using the finite-volume method based on the SIMPLER algorithm. The effects of Rayleigh number Ra, spacing between heat sources d, and aspect ratios Ax in x-direction (horizontal) and Az in z-direction (transversal) of the enclosure on heat transfer were investigated. In steady state, when d is increased, the heat transfer is more important than when the aspect ratios Ax and Az are reduced. In oscillatory state, the critical Rayleigh numbers Racr for different values of spacing between heat sources and their aspect ratios, at which the flow becomes time dependent, were obtained. Results show a strong relation between heat transfers, buoyant flow, and boundary layer. In addition, the heat transfer is more important at the edge of each face of heat sources than at the center region.


2017 ◽  
Vol 95 (3) ◽  
pp. 238-252 ◽  
Author(s):  
T. Armaghani ◽  
Muneer A. Ismael ◽  
Ali J. Chamkha

The present numerical study investigates the analysis of thermodynamic irreversibility generation and the natural convection in inclined partially porous layered cavity filled with a Cu–water nanofluid. The finite difference method with up-wind scheme is used to solve the governing equations. The study is achieved by examining the effects of nanoparticle volume fraction, inclination angle, and the porous layer thickness. Besides, the computations are achieved within the laminar range of the Rayleigh number. The results show that at Ra = 104, a reduction of total entropy generation is recorded with increasing nanoparticle volume fraction when the porous layer thickness is greater than 0.2. Moreover, when Ra is less than 105, the nanoparticle volume fraction increases the heat transfer irreversibility, and improves the overall thermal performance. It is found also that for a low Rayleigh number, the largest porous layer thickness and the highest cavity orientation improve the thermal performance. On the contrary, at high Rayleigh numbers, these parameter ranges give the worst thermal performance.


1989 ◽  
Vol 111 (4) ◽  
pp. 916-925 ◽  
Author(s):  
V. Prasad ◽  
A. Chui

A numerical study is performed on natural convection inside a cylindrical enclosure filled with a volumetrically heated, saturated porous medium for the case when the vertical wall is isothermal and the horizontal walls are either adiabatic or isothermally cooled. When the horizontal walls are insulated, the flow in the cavity is unicellular and the temperature field in upper layers is highly stratified. However, if the top wall is cooled, there may exist a multicellular flow and an unstable thermal stratification in the upper region of the cylinder. Under the influence of weak convection, the maximum temperature in the cavity can be considerably higher than that predicted for pure conduction. The local heat flux on the bounding walls is generally a strong function of the Rayleigh number, the aspect ratio, and the wall boundary conditions. The heat removal on the cold upper surface decreases with the aspect ratio, thereby increasing the Nusselt number on the vertical wall. The effect of Rayleigh number is, however, not straightforward. Several correlations are presented for the maximum cavity temperature and the overall Nusselt number.


Author(s):  
G. A. Sheikhzadeh ◽  
M. Pirmohammadi ◽  
M. Ghassemi

Numerical study natural convection heat transfer inside a differentially heated square cavity with adiabatic horizontal walls and vertical isothermal walls is investigated. Two perfectly conductive thin fins are attached to the isothermal walls. To solve the governing differential mass, momentum and energy equations a finite volume code based on Pantenkar’s simpler method is developed and utilized. The results are presented in form of streamlines, isotherms as well as Nusselt number for Rayleigh number ranging from 104 up to 107. It is shown that the mean Nusselt number is affected by the position of the fins and length of the fins as well as the Rayleigh number. It is also observed that maximum Nusselt number occurs about the middle of the enclosure where Lf is grater the 0.5. In addition the Nusselt number stays constant and does not varies with width of the cavity (lf) when Lf is equal to 0.5 and Rayleigh number is equal to 104 and 107 as well as when Lf is equal to 0.6 and low Rayleigh numbers.


Author(s):  
Manel Kraiem ◽  
Mustapha Karkri ◽  
Sassi Ben Nasrallah ◽  
patrick sobolciak ◽  
Magali Fois ◽  
...  

Thermophysical characterization of three paraffin waxes (RT27, RT21 and RT35HC) is carried out in this study using DSC, TGA and transient plane source technics. Then, a numerical study of their melting in a rectangular enclosure is examined. The enthalpy-porosity approach is used to formulate this problem in order to understand the heat transfer mechanism during the melting process. The analysis of the solid-liquid interface shape, the temperature field shows that the conduction is the dominant heat transfer mode in the beginning of the melting process. It is followed by a transition regime and the natural convection becomes the dominant heat transfer mode. The effects of the Rayleigh number and the aspect ratio of the enclosure on the melting phenomenon are studied and it is found that the intensity of the natural convection increases as the Rayleigh number is higher and the aspect ratio is smaller. In the second part of the numerical study, a comparison of the performance of paraffins waxes during the melting process is conducted. Results reveals that from a kinetically RT21 is the most performant but in term of heat storage capacity, it was inferred that RT35HC is the most efficient PCM.


Sign in / Sign up

Export Citation Format

Share Document