scholarly journals Influence of Pore Structure and Solid Bitumen on the Development of Deep Carbonate Gas Reservoirs: A Case Study of the Longwangmiao Reservoir in Gaoshiti–Longnusi Area, Sichuan Basin, SW China

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3825
Author(s):  
Jianxun Chen ◽  
Shenglai Yang ◽  
Dongfan Yang ◽  
Hui Deng ◽  
Jiajun Li ◽  
...  

A variable sedimentary environment and accumulation process leads to a complex pore structure in deep carbonate gas reservoirs, and the physical properties are quite different between layers. Moreover, some pores and throats are filled with solid bitumen (SB), which not only interferes with reservoir analysis, but also affects efficient development. However, previous studies on SB mainly focused on the accumulation process and reservoir analysis, and there are few reports about the influence on development. In this paper, through scanning electron microscope analysis, SB extraction, gas flow experiments and depletion experiments, and a similar transformation between experimental results and reservoir production, the production characteristics of carbonate gas reservoirs with different pore structures were studied, and the influence of SB on pore structure, reservoir analysis and development were systematically analyzed. The results show that permeability is one of the key factors affecting gas production rate and recovery, and the production is mainly contributed by high-permeability layers. Although the reserves are abundant, the gas production rate and recovery of layers with a low permeability are relatively low. The SB reduces the pore and throat radius, resulting in porosity and permeability being decreased by 4.73–6.28% and 36.02–3.70%, respectively. With the increase in original permeability, the permeability loss rate decreases. During development, the loss rate of gas production rate is much higher than that of permeability. Increasing the production pressure difference is conducive to reducing the influence. SB also reduces the recovery, which leads to the loss rate of gas production being much higher than that of porosity. For reservoirs with a high permeability, the loss rates of gas production rate and the amount produced are close to those of permeability and porosity. Therefore, in the reservoir analysis and development of carbonate gas reservoirs bearing SB, it is necessary and significant to analyze the influence of reservoir types.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yong Hu ◽  
Xizhe Li ◽  
Weijun Shen ◽  
Changmin Guo ◽  
Chunyan Jiao ◽  
...  

Water invasion is a common occurrence in multilayer unconsolidated gas reservoirs, which results in excessive water production and reduces the economic life of gas wells. However, due to multiple layers, active edge water, and strong heterogeneity, the mechanism of water invasion and its effect in the unconsolidated sandstone gas reservoir require understanding in order to improve efficiency and minimize economic cost. In this study, an experimental study on edge water invasion of the multilayer commingled production in unconsolidated sandstone gas reservoirs was conducted to understand the water invasion process along with different permeability layers. The results show that the edge water invasion in the commingling production is mainly affected by two major factors including reservoir permeability and gas production rate, which jointly control the encroaching water advance path and speed. The nonuniform invade of edge water may occur easily and water prefers to invade toward the gas well along with high permeability layers when the commingling production is in the condition of large permeability gradient and high production rate. The bypass flow will occur when there are high permeability channels between the layers, which causes water blocking to low-permeability layers and periphery reservoirs far away from gas wells. The findings of this study can help for a better understanding of water invasion and the effects of reservoir properties so as to optimize extraction conditions and predict gas productivity in unconsolidated sandstone gas reservoirs.


2021 ◽  
Vol 3 (2) ◽  
pp. 103-107
Author(s):  
Kazunori Abe ◽  
Nouman Zobby ◽  
Hikari Fujii

The complex pore structure with nano-pores of shale gas reservoirs has an impact on the hydrocarbon storage and transport systems. We examined the pore structure of the shales of the Ranikot Formation in the Lower Indus Basin, Pakistan to investigate the full scaled pore size distributions by using a combination of techniques, mercury injection capillary pressure analysis and low pressure gas adsorption methods using N2 and CO2. Isotherm curves obtained N2 and CO2 adsorptions were interpreted using density functional theory analysis for describing the nano-scaled pore size distributions. The pore geometry of the shales was estimated to be slit-type from the isotherm hysteresis loop shape. The pore size distributions determined the density functional theory showed the dominant pore size of below around 10 nm. The Micro-scale effects such as slippage and adsorption/desorption also significantly influence the gas flow in nano-pore structure. The gas flow regimes in shales are classified into four types Darcy flow, slip flow, transition flow, Knudsen flow based on the value of the Knudsen number. Applying the specific reservoir conditions in Ranikot shale and pore size distribution to the Knudsen number, the gas flow regimes of the Ranikot shales were estimated mostly within the transition and slip flow.


2019 ◽  
Vol 9 (9) ◽  
pp. 1821
Author(s):  
Mingtao Wu ◽  
Xiaodong Wang ◽  
Wenqi Zhao ◽  
Lun Zhao ◽  
Meng Sun ◽  
...  

Most naturally fractured gas reservoirs in China exhibit strongly heterogeneous, abnormally high-pressured and, stress-sensitive behaviors. In this work, a semianalytical solution is developed to study the production performance for limited-entry well in composite naturally fractured formations. The pressure-dependent porosity and permeability, anisotropy and limited-entry characteristics are taken into consideration. Furthermore, conventional Warren-Root model is amended to accommodate for permeability anisotropy. Laplace and finite Fourier cosine transforms are used to solve the diffusivity equations. The model is verified on the basis of previous literature’s results and data of a field example from Moxi gas field in Southwest China. Through the parameters sensitivity analysis, the effects of prevailing factors on production performance are investigated. Results indicate that a large inner region radius and high mobility ratio can improve gas production rate in the early stage, while they also lead to a drastic decline of production rate in the late stage. Large permeability stress-dependent coefficient and low penetrated interval both have a negative impact on production rate. With its high efficiency and simplicity, this proposed approach can serve as a convenient tool to evaluate the behavior of partially penetrated production well in abnormally high-pressured composite naturally fractured gas reservoirs.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1634 ◽  
Author(s):  
Juhyun Kim ◽  
Youngjin Seo ◽  
Jihoon Wang ◽  
Youngsoo Lee

Most shale gas reservoirs have extremely low permeability. Predicting their fluid transport characteristics is extremely difficult due to complex flow mechanisms between hydraulic fractures and the adjacent rock matrix. Recently, studies adopting the dynamic modeling approach have been proposed to investigate the shape of the flow regime between induced and natural fractures. In this study, a production history matching was performed on a shale gas reservoir in Canada’s Horn River basin. Hypocenters and densities of the microseismic signals were used to identify the hydraulic fracture distributions and the stimulated reservoir volume. In addition, the fracture width decreased because of fluid pressure reduction during production, which was integrated with the dynamic permeability change of the hydraulic fractures. We also incorporated the geometric change of hydraulic fractures to the 3D reservoir simulation model and established a new shale gas modeling procedure. Results demonstrate that the accuracy of the predictions for shale gas flow improved. We believe that this technique will enrich the community’s understanding of fluid flows in shale gas reservoirs.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ting Huang ◽  
Xiao Guo ◽  
Kun Wang

Shale is abundant in nanoscale pores, so gas flow in shales cannot be simply represented by Darcy formula anymore. It is crucial to figure out the influence of gas flow in nano/micro pores on actual productivity, which can provide basic theories for optimizing parameters and improving the gas production from engineering perspective. This paper considers the effects of slippage and diffusion in nanoscale based on Beskok-Karniadakis (BK) equation, which can be applicable for different flow regimes including continuum flow, slip flow, transition flow, and free-molecule flow. A new non-Darcy equation was developed based on the analysis of effects of high order terms of BK equation on permeability correction factor. By using the conformal transformation principle and pressure coupling method, we established the productivity formula of fractured well (infinite and limited conductivity) satisfying mass variable seepage flowing in fractures. The simulation results have been compared with field data and influencing parameters are analyzed thoroughly. It is concluded that slippage effect affects gas production of fractured well when wellbore pressure is less than 15 MPa, and the effects of slippage and diffusion have greater influence on gas production of fractured well for reservoir with smaller permeability, especially when permeability is at nano-Darcy scale.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4102
Author(s):  
Juncheng Qiao ◽  
Xianzheng Zhao ◽  
Jianhui Zeng ◽  
Guomeng Han ◽  
Shu Jiang ◽  
...  

The uncertainties between reservoir quality and gas migration and accumulation in tight sandstone gas reservoirs are intrinsically attributed to complex microscopic pore structures. Integrated analysis including the physical simulation experiment of gas migration and accumulation, X-ray computed tomography (X-CT), and casting thin section (CTS) were conducted on core plug samples collected from the Upper Paleozoic Permian Lower Shihezi and Shanxi tight sandstone of the Daniudi area in the Ordos Basin to investigate the impacts of pore structure on the gas migration and accumulation. Physical simulation suggested that the gas flows in migration in tight sandstone reservoirs were characterized by deviated-Darcy linear flow and non-linear flow regimes. Minimum and stable migration pressure square gradients determined by application of apparent permeability were employed as key parameters to describe gas flow. Pore structure characterization revealed that the tight sandstone reservoir was characterized by wide pore and throat size distributions and poor pore-throat connectivity. The pore–throat combinations could be divided into three types, including the macropore and coarse throat dominant reservoir, full-pore and full-throat form, and meso-small pore and fine throat dominant form. Comparative analyses indicated that pore and throat radii determined the gas flow regimes by controlling the minimum and stable migration pressure gradients. Gas accumulation capacity was dominated by the connected effective porosity, and the gas accumulation process was controlled by the cumulative effective porosity contribution from macropores to micropores. Variations in pore structures resulted in differences in gas migration and accumulation of tight sandstone reservoirs. The macropore and coarse throat-dominant and the full-pore and full-throat reservoirs exhibited greater gas migration and accumulation potentials than the small pore and fine throat dominate form.


Author(s):  
Jianxun Chen ◽  
Shenglai Yang ◽  
Qingyan Mei ◽  
Jingyuan Chen ◽  
Hao Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document