scholarly journals Coupled Climate–Economy–Biosphere (CoCEB) model – Part 1: Abatement efficacy of low-carbon technologies

Author(s):  
Keroboto B. Z. Ogutu ◽  
Fabio D'Andrea ◽  
Michael Ghil ◽  
Charles Nyandwi

Abstract. In the present Part 1 of a two-part paper, we formulate and study a simple Coupled Climate–Economy–Biosphere (CoCEB) model. This highly idealized model constitutes the basis of our integrated assessment approach to understanding the various feedbacks involved in the system. CoCEB is composed of a physical climate module, based on Earth's energy balance, and an economy module that uses endogenous economic growth with physical and human capital accumulation. We concentrate on the interactions between the two subsystems: the effect of climate on the economy, via damage functions, and the effect of the economy on climate, via control of greenhouse gas emissions. Simple functional forms of the relation between the two subsystems permit simple interpretations of the coupled effects. The CoCEB model is used to evaluate hypotheses on the long-term effect of investment in emission abatement, and on the comparative efficacy of different approaches to abatement. In this paper, we consider investments in low-carbon technologies. Carbon capture and storage (CCS), along with deforestation reduction, will be dealt with in Part 2. The CoCEB model is highly flexible and transparent; as such, it allows one to easily formulate and compare different functional representations of climate change mitigation policies. Using different mitigation measures and their cost estimates, as found in the literature, one is able to compare these measures in a coherent way. While many studies in the climate–economic literature treat abatement costs merely as an unproductive loss of income, this paper shows that mitigation costs do slow down economic growth over the next few decades, but only up to the mid-21st century or even earlier; growth reduction is compensated later on by having avoided negative impacts of climate change on the economy.

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3840
Author(s):  
Alla Toktarova ◽  
Ida Karlsson ◽  
Johan Rootzén ◽  
Lisa Göransson ◽  
Mikael Odenberger ◽  
...  

The concept of techno-economic pathways is used to investigate the potential implementation of CO2 abatement measures over time towards zero-emission steelmaking in Sweden. The following mitigation measures are investigated and combined in three pathways: top gas recycling blast furnace (TGRBF); carbon capture and storage (CCS); substitution of pulverized coal injection (PCI) with biomass; hydrogen direct reduction of iron ore (H-DR); and electric arc furnace (EAF), where fossil fuels are replaced with biomass. The results show that CCS in combination with biomass substitution in the blast furnace and a replacement primary steel production plant with EAF with biomass (Pathway 1) yield CO2 emission reductions of 83% in 2045 compared to CO2 emissions with current steel process configurations. Electrification of the primary steel production in terms of H-DR/EAF process (Pathway 2), could result in almost fossil-free steel production, and Sweden could achieve a 10% reduction in total CO2 emissions. Finally, (Pathway 3) we show that increased production of hot briquetted iron pellets (HBI), could lead to decarbonization of the steel industry outside Sweden, assuming that the exported HBI will be converted via EAF and the receiving country has a decarbonized power sector.


2018 ◽  
Vol 18 (1) ◽  
pp. 52-75 ◽  
Author(s):  
Jo-Kristian S. Røttereng

This article presents an analysis of twenty-six industrialized countries’ support for the carbon-sequestration-based mitigation measures carbon capture and storage (CCS) and reduced emissions from deforestation and forest degradation (REDD+) during the 2007–2014 period. The article explores whether these proposed solutions to climate change share characteristics that make them feasible for reasons that can be observed in cross-national patterns. Insights from political economy, public policy, and international relations form a “triply engaged” theoretical framework. Relationships are tested using bivariate statistics and multivariate regressions. The analysis reveals that the same states show stronger support for both CCS and REDD+, and mostly for the same reasons. Proponents of such measures are generally petroleum-producing, large, and affluent, and they do not take on more ambitious mitigation targets. This article is the first to suggest that the widely different carbon-sink-based mitigation measures CCS and REDD+ may share similar political functions in similar political contexts.


2015 ◽  
Vol 6 (1) ◽  
pp. 865-906
Author(s):  
K. B. Z. Ogutu ◽  
F. D'Andrea ◽  
M. Ghil ◽  
C. Nyandwi ◽  
M. M. Manene ◽  
...  

Abstract. This study uses the global climate–economy–biosphere (CoCEB) model developed in Part 1 to investigate economic aspects of deforestation control and carbon sequestration in forests, as well as the efficiency of carbon capture and storage (CCS) technologies as policy measures for climate change mitigation. We assume – as in Part 1 – that replacement of one technology with another occurs in terms of a logistic law, so that the same law also governs the dynamics of reduction in carbon dioxide emission using CCS technologies. In order to take into account the effect of deforestation control, a slightly more complex description of the carbon cycle than in Part 1 is needed. Consequently, we add a biomass equation into the CoCEB model and analyze the ensuing feedbacks and their effects on per capita gross domestic product (GDP) growth. Integrating biomass into the CoCEB and applying deforestation control as well as CCS technologies has the following results: (i) low investment in CCS contributes to reducing industrial carbon emissions and to increasing GDP, but further investment leads to a smaller reduction in emissions, as well as in the incremental GDP growth; and (ii) enhanced deforestation control contributes to a reduction in both deforestation emissions and in atmospheric carbon dioxide concentration, thus reducing the impacts of climate change and contributing to a slight appreciation of GDP growth. This effect is however very small compared to that of low-carbon technologies or CCS. We also find that the result in (i) is very sensitive to the formulation of CCS costs, while to the contrary, the results for deforestation control are less sensitive.


Significance The latest World Economic Outlook 2019 (WEO) from the International Energy Agency (IEA), published on November 13, suggests that achieving emissions targets will require gas to be a transition fuel, not a lasting solution. This will reduce investment in long-term projects involving combined cycle gas turbines and gas infrastructure. Impacts Growing concern about the emissions damage from increased gas use will encourage the development of alternative low-carbon technologies. Less investment in gas projects could create energy deficits unless renewable energy capacity and electricity grid construction increase. Impetus will grow to develop large carbon capture and storage (CCS) projects.


Daedalus ◽  
2012 ◽  
Vol 141 (2) ◽  
pp. 72-80 ◽  
Author(s):  
Daniel P. Schrag

Shale gas is a new energy resource that has shifted the dominant paradigm on U.S. hydrocarbon resources. Some have argued that shale gas will play an important role in reducing greenhouse gas emissions by displacing coal used for electricity, serving as a moderate-carbon “bridge fuel.” Others have questioned whether methane emissions from shale gas extraction lead to higher greenhouse gas emissions overall. I argue that the main impact of shale gas on climate change is neither the reduced emissions from fuel substitution nor the greenhouse gas footprint of natural gas itself, but rather the competition between abundant, low-cost gas and low-carbon technologies, including renewables and carbon capture and storage. This might be remedied if the gas industry joins forces with environmental groups, providing a counterbalance to the coal lobby, and ultimately eliminating the conventional use of coal in the United States.


Author(s):  
Mehmetali AK ◽  
◽  
Aslı GÜNEŞ GÖLBEY ◽  

One of the most important environmental problems in today's world is climate change caused by greenhouse gases. Due to the increase in CO2 emissions from greenhouse gases, climate change is increasing and moving towards the point of no return. In this process, many ideas have been developed to combat climate change. One of these ideas is that cities should be sustainable. In order for cities to be sustainable, activities such as expanding the use of renewable energy resources in cities, increasing green and environmentally friendly transportation, improving air quality, and minimizing carbon emissions should be carried out. In this context, open green areas have important effects in terms of improving air quality, reducing the heat island effect in cities and especially keeping carbon emissions to a minimum. Thus, the efficiency and productivity of carbon capture and storage of green areas come to the fore. There are several methods to measure the carbon capture and storage efficiency of green areas and to evaluate their efficiency. In this study, the methods used in determining open green areas in cities and evaluating biomass productivity in these areas will be examined.


2021 ◽  
Author(s):  
Tom Terlouw ◽  
Karin Treyer ◽  
christian bauer ◽  
Marco Mazzotti

Prospective energy scenarios usually rely on Carbon Dioxide Removal (CDR) technologies to achieve the climate goals of the Paris Agreement. CDR technologies aim at removing CO2 from the atmosphere in a permanent way. However, the implementation of CDR technologies typically comes along with unintended environmental side-effects such as land transformation or water consumption. These need to be quantified before large-scale implementation of any CDR option by means of Life Cycle Assessment (LCA). Direct Air Carbon Capture and Storage (DACCS) is considered to be among the CDR technologies closest to large-scale implementation, since first pilot and demonstration units have been installed and interactions with the environment are less complex than for biomass related CDR options. However, only very few LCA studies - with limited scope - have been conducted so far to determine the overall life-cycle environmental performance of DACCS. We provide a comprehensive LCA of different low temperature DACCS configurations - pertaining to solid sorbent-based technology - including a global and prospective analysis.


2021 ◽  
Vol 61 (2) ◽  
pp. 466
Author(s):  
Prakash Sharma ◽  
Benjamin Gallagher ◽  
Jonathan Sultoon

Australia is in a bind. It is at the heart of the pivot to clean energy: it contains some of the world’s best solar irradiance and vast potential for large-scale carbon capture and storage; it showed the world the path forward with its stationary storage flexibility at the much vaunted Hornsdale power reserve facility; and it moved quickly to capitalise on low-carbon hydrogen production. Yet it remains one of the largest sources for carbon-intensive energy exports in the world. The extractive industries are still delivering thermal coal for power generation and metallurgical coal for carbon-intensive steel making in Asian markets. Even liquefied natural gas’s green credentials are being questioned. Are these two pathways compatible? The treasury and economy certainly benefit. But there is a huge opportunity to redress the source of those funds and jobs, while fulfilling the aspirations to reach net zero emissions by 2050. In our estimates, the low-carbon hydrogen economy could grow to become so substantial that 15% of all energy may be ultimately ‘carried’ by hydrogen by 2050. It is certainly needed to keep the world from breaching 2°C. Can Australia master the hydrogen trade? It is believed that it has a very good chance. Blessed with first-mover investment advantage, and tremendous solar and wind resourcing, Australia is already on a pathway to become a producer of green hydrogen below US$2/kg by 2030. How might it then construct a supply chain to compete in the international market with established trading partners and end users ready to renew old acquaintances? Its route is assessed to mastery of the hydrogen trade, analyse critical competitors for end use and compare costs with other exporters of hydrogen.


Sign in / Sign up

Export Citation Format

Share Document