scholarly journals A Design Method for Magnetically Coupled Resonant Coils Considering Transmission Objectives and Dimension Constraints

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4144
Author(s):  
Jingang Wang ◽  
Chen Shen ◽  
Pengcheng Zhao ◽  
Shucheng Ou ◽  
Zhi Xu ◽  
...  

This paper proposes a coil design method for the magnetically coupled resonant wireless power transfer (MCR-WPT) system. Based on the Biot–Savart law, the magnetic flux density at the observation point was derived, and the magnetic flux of the observation plane generated by the exciting coil was deduced to build the calculation model of power transfer efficiency (PTE) and power delivered to the load (PDL). The PTE and PDL curves via coil parameters could be fitted in minutes using numerical calculation. The coil was designed according to transmission objectives and dimension constraints. In addition, the calculated PTE and PDL were compared with those from finite element analysis to verify the credibility of the method. Finally, the actual curves of PTE and PDL were achieved, which showed a strong positive correlation with the corresponding curves from the calculation model. The relative average deviations of PDL curves were less than 6.11%. Meanwhile, coils designed with the numerical calculation could realize 309.80 W and 88.51%, which achieved the objectives under the constraints. The results demonstrate that the proposed method can realize a rapid and accurate coil design under constraints. It can also be applied to other coil structures or circuit topologies with strong universality.

2018 ◽  
Vol 225 ◽  
pp. 01017 ◽  
Author(s):  
Mohd Fakhizan Romlie ◽  
Kevin Lau ◽  
Mohd Zaifulrizal Zainol ◽  
Mohd Faris Abdullah ◽  
Ramani Kannan

The objective of this paper is to investigate the impact of the spiral coil shape of inductive coupled power transfer on its performance. The coil shapes evaluated are: circular, square and pentagon spiral shapes. The coils are modelled in Ansoft Maxwell software. Simulations are carried out to determine the mutual inductance, coupling coefficient and magnetic flux density. The performance in term of magnetic flux density, mutual inductance and coupling coefficient of the three coils shapes are compared. Of the three shapes, the pentagon is shown to have the best performance in term of its mutual inductance, coupling coefficient and magnetic flux density.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5304
Author(s):  
Ce Liang ◽  
Yanchi Zhang ◽  
Zhonggang Li ◽  
Feng Yuan ◽  
Guang Yang ◽  
...  

As an auxiliary function of the wireless power transfer (WPT) system, coil positioning can solve the power and efficiency degradation during power transmission caused by misalignment of the magnetic coupler. In this paper, a Hall sensor array is used to measure the change of magnetic flux density. By comparing the multisensor data fusion results with the preset data obtained from the coil alignment, the real-time accurate positioning of the receiving coil can be realized. Firstly, the positioning model of the receiving coil is built and the variation of magnetic flux density with the coil misalignment is analyzed. Secondly, the arrangement of the Planar 8-direction symmetric sensor array and the positioning algorithm based on data fusion of magnetic flux density variations are proposed. In order to avoid coil positioning misalignment caused by the unstable magnetic field distribution which is actually affected by the change of mutual inductance during automatic guided vehicle (AGV) alignment, the constant current strategy of primary and secondary sides is proposed. Finally, the coil positioning experimental platform is built. The experimental results show that the coil positioning method proposed in this paper has high accuracy, and the positioning error is within 4 cm.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 194
Author(s):  
Michał Marczak ◽  
Józef Zawora

In this article, we present a numerical model of a magnetic abrasive finishing station, which was analyzed using the finite element method (FEM). The obtained results were compared with the real values measured on an experimental station of our own design. The prepared station had the option of adjusting the magnetic flux density inside the machining gap, the width of which could be changed from 10 to 30 mm. The maximum value of the magnetic flux density inside the air gap was 0.8 T. The real distribution of magnetic flux density in the finishing area was also analyzed. A design of experiment was carried out with the following variables: abrasive grain concentration, width of the machining gap, and process duration. The results are presented in the form of regression equations and characteristics for selected roughness parameters.


Author(s):  
Jun Xu ◽  
Eugeni L. Doubrovski ◽  
Jo Geraedts ◽  
Yu Song

Abstract The geometric shapes and the relative position of coils influence the performance of a three-dimensional (3D) inductive power transfer system. In this paper, we propose a coil design method for specifying the positions and the shapes of a pair of coils to transmit the desired power in 3D. Given region of interests (ROIs) for designing the transmitter and the receiver coils on two surfaces, the transmitter coil is generated around the center of its ROI first. The center of the receiver coil is estimated as a random seed position in the corresponding 3D surface. At this position, we use the heatmap method with electromagnetic constraints to iteratively extend the coil until the desired power can be transferred via the set of coils. In each step, the shape of the extension, i.e. a new turn of the receiver coil, is found as a spiral curve based on the convex hulls of adjacent turns in the 2D projection plane along their normal direction. Then, the optimal position of the receiver coil is found by maximizing the efficiency of the system. In the next step, the position and the shape of the transmitter coil are optimized based on the fixed receiver coil using the same method. This zig-zag optimization process iterates until an optimum is reached. Simulations and experiments with digitally fabricated prototypes were conducted and the effectiveness of the proposed 3D coil design method was verified. Possible future research directions are highlighted well.


2017 ◽  
Vol 9 (9) ◽  
pp. 1799-1807
Author(s):  
Xiufang Wang ◽  
Yu Wang ◽  
Yilang Liang ◽  
Guangcheng Fan ◽  
Xinyi Nie ◽  
...  

Magnetic coupling resonance wireless power transfer technology has attracted worldwide attention in recent years due to its mid-range, non-radiative, and high-efficiency power transfer. However, in regard to its practical applications, there are still some issues that need to be considered and studied with respect to coil design, such as coil structure, and parasitic parameter extraction. This paper investigated the characteristics of magnetic coupling resonance wireless power transfer systems with different coil structures, including circular coils and rectangular coils arranged in parallel. We calculated the magnetic field distributions and mutual inductances by subdividing the receiving coils and computing the magnetic flux density of each subdivision. The proposed analysis was validated by means of the finite element analysis and the experimental results. We investigated the effects of the coil's structure, and topological structures, on the power transfer efficiency. The results demonstrate that using circular coils in parallel is more advantageous than using rectangular coils.


Sign in / Sign up

Export Citation Format

Share Document