scholarly journals Modeling and Detection of Future Cyber-Enabled DSM Data Attacks

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4331
Author(s):  
Kostas Hatalis ◽  
Chengbo Zhao ◽  
Parv Venkitasubramaniam ◽  
Larry Snyder ◽  
Shalinee Kishore ◽  
...  

Demand-Side Management (DSM) is an essential tool to ensure power system reliability and stability. In future smart grids, certain portions of a customer’s load usage could be under the automatic control of a cyber-enabled DSM program, which selectively schedules loads as a function of electricity prices to improve power balance and grid stability. In this scenario, the security of DSM cyberinfrastructure will be critical as advanced metering infrastructure and communication systems are susceptible to cyber-attacks. Such attacks, in the form of false data injections, can manipulate customer load profiles and cause metering chaos and energy losses in the grid. The feedback mechanism between load management on the consumer side and dynamic price schemes employed by independent system operators can further exacerbate attacks. To study how this feedback mechanism may worsen attacks in future cyber-enabled DSM programs, we propose a novel mathematical framework for (i) modeling the nonlinear relationship between load management and real-time pricing, (ii) simulating residential load data and prices, (iii) creating cyber-attacks, and (iv) detecting said attacks. In this framework, we first develop time-series forecasts to model load demand and use them as inputs to an elasticity model for the price-demand relationship in the DSM loop. This work then investigates the behavior of such a feedback loop under intentional cyber-attacks. We simulate and examine load-price data under different DSM-participation levels with three types of random additive attacks: ramp, sudden, and point attacks. We conduct two investigations for the detection of DSM attacks. The first studies a supervised learning approach, with various classification models, and the second studies the performance of parametric and nonparametric change point detectors. Results conclude that higher amounts of DSM participation can exacerbate ramp and sudden attacks leading to better detection of such attacks, especially with supervised learning classifiers. We also find that nonparametric detection outperforms parametric for smaller user pools, and random point attacks are the hardest to detect with any method.

Author(s):  
Kostas Hatalis ◽  
Chengbo Zhao ◽  
Parv Venkitasubramaniam ◽  
Larry Snyder ◽  
Shalinee Kishore ◽  
...  

Demand-Side Management (DSM) is an essential tool to ensure power system reliability and stability. In future smart grids, certain portions of a customer’s load usage could be under the automatic control of a cyber-enabled DSM program, which selectively schedules loads as a function of electricity prices to improve power balance and grid stability. In this scenario, the security of DSM cyberinfrastructure will be critical as advanced metering infrastructure and communication systems are susceptible to cyber-attacks. Such attacks, in the form of false data injections, can manipulate customer load profiles and cause metering chaos and energy losses in the grid. The feedback mechanism between load management on the consumer side and dynamic price schemes employed by independent system operators can further exacerbate attacks. To study how this feedback mechanism may worsen attacks in future cyber-enabled DSM programs, we propose a novel mathematical framework for (i) modeling the nonlinear relationship between load management and real-time pricing, (ii) simulating residential load data and prices, (iii) creating cyber-attacks, and (iv) detecting said attacks. In this framework, we first develop time-series forecasts to model load demand and use them as inputs to an elasticity model for the price-demand relationship in the DSM loop. This work then investigates the behavior of such a feedback loop under intentional cyber-attacks. We simulate and examine load-price data under different DSM-participation levels with three types of random additive attacks: ramp, sudden, and point attacks. We conduct two investigations for the detection of DSM attacks. The first studies a supervised learning approach, with various classification models, and the second studies the performance of parametric and nonparametric change point detectors. Results conclude that higher amounts of DSM participation can exacerbate ramp and sudden attacks leading to better detection of such attacks, especially with supervised learning classifiers. We also find that nonparametric detection outperforms parametric for smaller user pools, and random point attacks are the hardest to detect with any method.


Information ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 328
Author(s):  
Ruobin Qi ◽  
Craig Rasband ◽  
Jun Zheng ◽  
Raul Longoria

Smart grids integrate advanced information and communication technologies (ICTs) into traditional power grids for more efficient and resilient power delivery and management, but also introduce new security vulnerabilities that can be exploited by adversaries to launch cyber attacks, causing severe consequences such as massive blackout and infrastructure damages. Existing machine learning-based methods for detecting cyber attacks in smart grids are mostly based on supervised learning, which need the instances of both normal and attack events for training. In addition, supervised learning requires that the training dataset includes representative instances of various types of attack events to train a good model, which is sometimes hard if not impossible. This paper presents a new method for detecting cyber attacks in smart grids using PMU data, which is based on semi-supervised anomaly detection and deep representation learning. Semi-supervised anomaly detection only employs the instances of normal events to train detection models, making it suitable for finding unknown attack events. A number of popular semi-supervised anomaly detection algorithms were investigated in our study using publicly available power system cyber attack datasets to identify the best-performing ones. The performance comparison with popular supervised algorithms demonstrates that semi-supervised algorithms are more capable of finding attack events than supervised algorithms. Our results also show that the performance of semi-supervised anomaly detection algorithms can be further improved by augmenting with deep representation learning.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1451
Author(s):  
Ayusee Swain ◽  
Surender Reddy Salkuti ◽  
Kaliprasanna Swain

Energy efficiency and data security of smart grids are one of the major concerns in the context of implementing modern approaches in smart cities. For the intelligent management of energy systems, wireless sensor networks and advanced metering infrastructures have played an essential role in the transformation of traditional cities into smart communities. In this paper, a smart city energy model is proposed in which prosumer communities were built by interconnecting energy self-sufficient households to generate, consume and share clean energy on a decentralized trading platform by integrating blockchain technology with a smart microgrid. The efficiency and stability of the grid network were improved by using several wireless sensor nodes that manage a massive amount of data in the network. However, long communication distances between sensor nodes and the base station can greatly consume the energy of sensors and decrease the network lifespan. Therefore, bio-inspired algorithm approaches were proposed to improve routing by obtaining the shortest path for traversing the entire network and increasing the system performance in terms of the efficient selection of cluster heads, reduced energy consumption, and extended network lifetime. This was carried out by studying the properties and mechanisms of biological systems and applying them in the communication systems in order to obtain the best results for a specific problem. In this comprehensive model, particle swarm optimization and a genetic algorithm are used to search for the optimal solution in any problem space in less processing time.


Network ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 50-74
Author(s):  
Divyanshu Pandey ◽  
Adithya Venugopal ◽  
Harry Leib

Most modern communication systems, such as those intended for deployment in IoT applications or 5G and beyond networks, utilize multiple domains for transmission and reception at the physical layer. Depending on the application, these domains can include space, time, frequency, users, code sequences, and transmission media, to name a few. As such, the design criteria of future communication systems must be cognizant of the opportunities and the challenges that exist in exploiting the multi-domain nature of the signals and systems involved for information transmission. Focussing on the Physical Layer, this paper presents a novel mathematical framework using tensors, to represent, design, and analyze multi-domain systems. Various domains can be integrated into the transceiver design scheme using tensors. Tools from multi-linear algebra can be used to develop simultaneous signal processing techniques across all the domains. In particular, we present tensor partial response signaling (TPRS) which allows the introduction of controlled interference within elements of a domain and also across domains. We develop the TPRS system using the tensor contracted convolution to generate a multi-domain signal with desired spectral and cross-spectral properties across domains. In addition, by studying the information theoretic properties of the multi-domain tensor channel, we present the trade-off between different domains that can be harnessed using this framework. Numerical examples for capacity and mean square error are presented to highlight the domain trade-off revealed by the tensor formulation. Furthermore, an application of the tensor framework to MIMO Generalized Frequency Division Multiplexing (GFDM) is also presented.


Author(s):  
Buvanesh Pandian V

Reinforcement learning is a mathematical framework for agents to interact intelligently with their environment. Unlike supervised learning, where a system learns with the help of labeled data, reinforcement learning agents learn how to act by trial and error only receiving a reward signal from their environments. A field where reinforcement learning has been prominently successful is robotics [3]. However, real-world control problems are also particularly challenging because of the noise and high- dimensionality of input data (e.g., visual input). In recent years, in the field of supervised learning, deep neural networks have been successfully used to extract meaning from this kind of data. Building on these advances, deep reinforcement learning was used to solve complex problems like Atari games and Go. Mnih et al. [1] built a system with fixed hyper parameters able to learn to play 49 different Atari games only from raw pixel inputs. However, in order to apply the same methods to real-world control problems, deep reinforcement learning has to be able to deal with continuous action spaces. Discretizing continuous action spaces would scale poorly, since the number of discrete actions grows exponentially with the dimensionality of the action. Furthermore, having a parametrized policy can be advantageous because it can generalize in the action space. Therefore with this thesis we study state-of-the-art deep reinforcement learning algorithm, Deep Deterministic Policy Gradients. We provide a theoretical comparison to other popular methods, an evaluation of its performance, identify its limitations and investigate future directions of research. The remainder of the thesis is organized as follows. We start by introducing the field of interest, machine learning, focusing our attention of deep learning and reinforcement learning. We continue by describing in details the two main algorithms, core of this study, namely Deep Q-Network (DQN) and Deep Deterministic Policy Gradients (DDPG). We then provide implementatory details of DDPG and our test environment, followed by a description of benchmark test cases. Finally, we discuss the results of our evaluation, identifying limitations of the current approach and proposing future avenues of research.


2021 ◽  
Author(s):  
Ramyar Rashed Mohassel

With the introduction of new technologies, concepts and approaches in power transmission, distribution and utilization such as Smart Grids (SG), Advanced Metering Infrastructures (AMI), Distributed Energy Resources (DER) and Demand Side Management (DSM), new capabilities have emerged that enable efficient use and management of power consumption. These capabilities are applicable at micro level in households and building complexes as well as at macro level for utility providers in form of resource and revenue management initiatives. On the other hand, integration of Information Technology (IT) and instrumentation has brought Building Management Systems (BMS) to our homes and has made it possible for the ordinary users to take advantage of more complex and sophisticated energy and cost management features as an integral part of their BMS. The idea of combining capabilities and advantages offered by SG, AMI, DER, DSM and BMS is the backbone of this thesis and has resulted in developing a unique, two-level optimization method for effective deployment of DSM at households and residential neighborhoods. The work consists of an optimization algorithm for households to maximize utilization of DER as the lower level of the envisioned two-level optimization technique while using a customized Game Theoretic optimization for optimizing revenue of utility providers for residential neighborhood as the upper level. This work will also introduce a power management unit, called Load Moderation Center (LMC), to host the developed optimization algorithms as an integrated part of BMS. LMC, upon successful completion, will be able to automatically plan consumption, effectively utilize available sources including grid, renewable energies and storages, and eliminate the need for residences to manually program their BMS for different market scenarios.


Sign in / Sign up

Export Citation Format

Share Document