scholarly journals An Optimized and Decentralized Energy Provision System for Smart Cities

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1451
Author(s):  
Ayusee Swain ◽  
Surender Reddy Salkuti ◽  
Kaliprasanna Swain

Energy efficiency and data security of smart grids are one of the major concerns in the context of implementing modern approaches in smart cities. For the intelligent management of energy systems, wireless sensor networks and advanced metering infrastructures have played an essential role in the transformation of traditional cities into smart communities. In this paper, a smart city energy model is proposed in which prosumer communities were built by interconnecting energy self-sufficient households to generate, consume and share clean energy on a decentralized trading platform by integrating blockchain technology with a smart microgrid. The efficiency and stability of the grid network were improved by using several wireless sensor nodes that manage a massive amount of data in the network. However, long communication distances between sensor nodes and the base station can greatly consume the energy of sensors and decrease the network lifespan. Therefore, bio-inspired algorithm approaches were proposed to improve routing by obtaining the shortest path for traversing the entire network and increasing the system performance in terms of the efficient selection of cluster heads, reduced energy consumption, and extended network lifetime. This was carried out by studying the properties and mechanisms of biological systems and applying them in the communication systems in order to obtain the best results for a specific problem. In this comprehensive model, particle swarm optimization and a genetic algorithm are used to search for the optimal solution in any problem space in less processing time.

Author(s):  
Mohammed Baqer ◽  
Luisella Balbis

Background and Objective: Wireless Sensor Networks (WSN) are one of the most important elements in the Internet of Things (IoT) paradigm. It is envisaged that WSNs will seamlessly bridge the physical world with the Internet resulting in countless IoT applications in smart cities, wearable devices, smart grids, smart retails amongst others. It is necessary, however, to consider that sensing, processing and communicating large amounts of sensor data is an energy-demanding tasks. Recharging or replacing those battery-powered sensor nodes deployed in inaccessible locations is generally a tedious and time-consuming task. As a result, energy efficient approaches for WSN need to be devised in order to prolong the longevity of the network. Methods: In this paper, we present an approach that reduces energy consumption by controlling the sampling rate and the number of actively communicating nodes. The proposed approach applies compressive sensing to reduce the sampling rate and a statistical approach to decrease the sample size of sensor nodes. Results and Conclusion: The proposed approach is expected to significantly increase the lifetime of the network whilst maintaining the event detection accuracy.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Author(s):  
Piyush Rawat ◽  
Siddhartha Chauhan

Background and Objective: The functionalities of wireless sensor networks (WSN) are growing in various areas, so to handle the energy consumption of network in an efficient manner is a challenging task. The sensor nodes in the WSN are equipped with limited battery power, so there is a need to utilize the sensor power in an efficient way. The clustering of nodes in the network is one of the ways to handle the limited energy of nodes to enhance the lifetime of the network for its longer working without failure. Methods: The proposed approach is based on forming a cluster of various sensor nodes and then selecting a sensor as cluster head (CH). The heterogeneous sensor nodes are used in the proposed approach in which sensors are provided with different energy levels. The selection of an efficient node as CH can help in enhancing the network lifetime. The threshold function and random function are used for selecting the cluster head among various sensors for selecting the efficient node as CH. Various performance parameters such as network lifespan, packets transferred to the base station (BS) and energy consumption are used to perform the comparison between the proposed technique and previous approaches. Results and Discussion: To validate the working of the proposed technique the simulation is performed in MATLAB simulator. The proposed approach has enhanced the lifetime of the network as compared to the existing approaches. The proposed algorithm is compared with various existing techniques to measure its performance and effectiveness. The sensor nodes are randomly deployed in a 100m*100m area. Conclusion: The simulation results showed that the proposed technique has enhanced the lifespan of the network by utilizing the node’s energy in an efficient manner and reduced the consumption of energy for better network performance.


2020 ◽  
Vol 13 (2) ◽  
pp. 168-172
Author(s):  
Ravi Kumar Poluru ◽  
M. Praveen Kumar Reddy ◽  
Syed Muzamil Basha ◽  
Rizwan Patan ◽  
Suresh Kallam

Background:Recently Wireless Sensor Network (WSN) is a composed of a full number of arbitrarily dispensed energy-constrained sensor nodes. The sensor nodes help in sensing the data and then it will transmit it to sink. The Base station will produce a significant amount of energy while accessing the sensing data and transmitting data. High energy is required to move towards base station when sensing and transmitting data. WSN possesses significant challenges like saving energy and extending network lifetime. In WSN the most research goals in routing protocols such as robustness, energy efficiency, high reliability, network lifetime, fault tolerance, deployment of nodes and latency. Most of the routing protocols are based upon clustering has been proposed using heterogeneity. For optimizing energy consumption in WSN, a vital technique referred to as clustering.Methods:To improve the lifetime of network and stability we have proposed an Enhanced Adaptive Distributed Energy-Efficient Clustering (EADEEC).Results:In simulation results describes the protocol performs better regarding network lifetime and packet delivery capacity compared to EEDEC and DEEC algorithm. Stability period and network lifetime are improved in EADEEC compare to DEEC and EDEEC.Conclusion:The EADEEC is overall Lifetime of a cluster is improved to perform the network operation: Data transfer, Node Lifetime and stability period of the cluster. EADEEC protocol evidently tells that it improved the throughput, extended the lifetime of network, longevity, and stability compared with DEEC and EDEEC.


2016 ◽  
Vol 26 (1) ◽  
pp. 17
Author(s):  
Carlos Deyvinson Reges Bessa

ABSTRACTThis work aims to study which wireless sensor network routing protocol is more suitable for Smart Grids applications, through simulation of AODV protocols, AOMDV, DSDV and HTR in the NS2 simulation environment. Was simulated a network based on a residential area with 47 residences, with one node for each residence and one base station, located about 25m from the other nodes. Many parameters, such as packet loss, throughput, delay, jitter and energy consumption were tested.  The network was increased to 78 and 93 nodes in order to evaluate the behavior of the protocols in larger networks. The tests proved that the HTR is the routing protocol that has the best results in performance and second best in energy consumption. The DSDV had the worst performance according to the tests.Key words.- Smart grid, QoS analysis, Wireless sensor networks, Routing protocols.RESUMENEste trabajo tiene como objetivo estudiar el protocolo de enrutamiento de la red de sensores inalámbricos es más adecuado para aplicaciones de redes inteligentes, a través de la simulación de protocolos AODV, AOMDV, DSDV y HTR en el entorno de simulación NS2. Se simuló una red basada en una zona residencial con 47 residencias, con un nodo para cada residencia y una estación base, situada a unos 25 metros de los otros nodos. Muchos parámetros, tales como la pérdida de paquetes, rendimiento, retardo, jitter y el consumo de energía se probaron. La red se incrementó a 78 y 93 nodos con el fin de evaluar el comportamiento de los protocolos de redes más grandes. Las pruebas demostraron que el HTR es el protocolo de enrutamiento que tiene los mejores resultados en el rendimiento y el segundo mejor en el consumo de energía. El DSDV tuvo el peor desempeño de acuerdo a las pruebas.Palabras clave.- redes inteligentes, análisis de calidad de servicio, redes de sensores inalámbricas, protocolos de enrutamiento.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 218
Author(s):  
Ala’ Khalifeh ◽  
Khalid A. Darabkh ◽  
Ahmad M. Khasawneh ◽  
Issa Alqaisieh ◽  
Mohammad Salameh ◽  
...  

The advent of various wireless technologies has paved the way for the realization of new infrastructures and applications for smart cities. Wireless Sensor Networks (WSNs) are one of the most important among these technologies. WSNs are widely used in various applications in our daily lives. Due to their cost effectiveness and rapid deployment, WSNs can be used for securing smart cities by providing remote monitoring and sensing for many critical scenarios including hostile environments, battlefields, or areas subject to natural disasters such as earthquakes, volcano eruptions, and floods or to large-scale accidents such as nuclear plants explosions or chemical plumes. The purpose of this paper is to propose a new framework where WSNs are adopted for remote sensing and monitoring in smart city applications. We propose using Unmanned Aerial Vehicles to act as a data mule to offload the sensor nodes and transfer the monitoring data securely to the remote control center for further analysis and decision making. Furthermore, the paper provides insight about implementation challenges in the realization of the proposed framework. In addition, the paper provides an experimental evaluation of the proposed design in outdoor environments, in the presence of different types of obstacles, common to typical outdoor fields. The experimental evaluation revealed several inconsistencies between the performance metrics advertised in the hardware-specific data-sheets. In particular, we found mismatches between the advertised coverage distance and signal strength with our experimental measurements. Therefore, it is crucial that network designers and developers conduct field tests and device performance assessment before designing and implementing the WSN for application in a real field setting.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Chin-Ling Chen ◽  
Chih-Cheng Chen ◽  
De-Kui Li

In recent years, wireless sensor network (WSN) applications have tended to transmit data hop by hop, from sensor nodes through cluster nodes to the base station. As a result, users must collect data from the base station. This study considers two different applications: hop by hop transmission of data from cluster nodes to the base station and the direct access to cluster nodes data by mobile users via mobile devices. Due to the hardware limitations of WSNs, some low-cost operations such as symmetric cryptographic algorithms and hash functions are used to implement a dynamic key management. The session key can be updated to prevent threats of attack from each communication. With these methods, the data gathered in wireless sensor networks can be more securely communicated. Moreover, the proposed scheme is analyzed and compared with related schemes. In addition, an NS2 simulation is developed in which the experimental results show that the designed communication protocol is workable.


A Wireless Sensor Network (WSN) is a component with sensor nodes that continuously observes environmental circumstances. Sensor nodes accomplish different key operations like sensing temperature and distance. It has been used in many applications like computing, signal processing, and network selfconfiguration to expand network coverage and build up its scalability. The Unit of all these sensors that exhibit sensing and transmitting information will offer more information than those offered by autonomously operating sensors. Usually, the transmitting task is somewhat critical as there is a huge amount of data and sensors devices are restricted. Being the limited number of sensor devices the network is exposed to different types of attacks. The Traditional security mechanisms are not suitable for WSN as they are generally heavy and having limited number of nodes and also these mechanisms will not eliminate the risk of other attacks. WSN are most useful in different crucial domains such as health care, environment, industry, and security, military. For example, in a military operation, a wireless sensor network monitors various activities. If an event is detected, these sensor nodes sense that and report the data to the primary (base) station (called sink) by making communication with other nodes. To collect data from WSN base Stations are commonly used. Base stations have more resources (e.g. computation power and energy) compared to normal sensor nodes which include more or less such limitations. Aggregation points will gather the data from neighboring sensor nodes to combine the data and forward to master (base) stations, where the data will be further forwarded or processed to a processing center. In this manner, the energy can be preserved in WSN and the lifetime of network is expanded.


Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


2021 ◽  
Author(s):  
Jenice Prabu A ◽  
Hevin Rajesh D

Abstract In Wireless sensor network, the major issues are security and energy consumption. There may be several numbers of malicious nodes present in sensor networks. Several techniques have been proposed by the researchers to identify these malicious nodes. WSNs contain many sensor nodes that sense their environment and also transmit their data via multi-hop communication schemes to the base station. These sensor nodes provides power supply using battery and the energy consumption of these batteries must be low. Securing the data is to avoid attacks on these nodes and data communication. The aggregation of data helps to minimize the amount of messages transmitted within the network and thus reduces overall network energy consumption. Moreover, the base station may distinguish the encrypted and aggregated data based on the encryption keys during the decryption of the aggregated data. In this paper, two aspects of the problem is concerned, we investigate the efficiency of data aggregation: first, how to develop cluster-based routing algorithms to achieve the lowest energy consumption for aggregating data, and second, security issues in wsn. By using Network simulator2 (NS2) this scheme is simulated. In the proposed scheme, energy consumption, packet delivery ratio and throughput is analyzed. The proposed clustering, routing, and protection protocol based on the MCSDA algorithm shows significant improvement over the state-of - the-art protocol.


Sign in / Sign up

Export Citation Format

Share Document