scholarly journals A Smart Grid AMI Intrusion Detection Strategy Based on Extreme Learning Machine

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4907
Author(s):  
Ke Zhang ◽  
Zhi Hu ◽  
Yufei Zhan ◽  
Xiaofen Wang ◽  
Keyi Guo

The smart grid is vulnerable to network attacks, thus requiring a high detection rate and fast detection speed for intrusion detection systems. With a fast training speed and a strong model generalization ability, the extreme learning machine (ELM) perfectly meets the needs of intrusion detection of the smart grid. In this paper, the ELM is applied to the field of smart grid intrusion detection. Aiming at the problem that the randomness of input weights and hidden layer bias in the ELM cannot guarantee the optimal performance of the ELM intrusion detection model, a genetic algorithm (GA)-ELM algorithm based on a genetic algorithm (GA) is proposed. GA is used to optimize the input weight and hidden layer bias of the ELM. Firstly, the input weight and hidden layer bias of the ELM are mapped to the chromosome vector of a GA, and the test error of the ELM model is set as the fitness function of the GA. Then, the parameters of the ELM intrusion detection model are optimized by genetic operation; the input weight and bias, corresponding to the minimum test error, are selected to improve the performance of the ELM model. Compared with the ELM and online sequential extreme learning machine (OS-ELM), the GA-ELM effectively improves the accuracy, detection rate and precision of intrusion detection and reduces the false positive rate and missing report rate.

2020 ◽  
Vol 62 (1) ◽  
pp. 15-21
Author(s):  
Changdong Wu

In an online monitoring system for an electrified railway, it is important to classify the catenary equipment successfully. The extreme learning machine (ELM) is an effective image classification algorithm and the genetic algorithm (GA) is a typical optimisation method. In this paper, a coupled genetic algorithm-extreme learning machine (GA-ELM) technique is proposed for the classification of catenary equipment. Firstly, the GA is used to search for optimal features by reducing the initial multi-dimensional features to low-dimensional features. Next, the optimised features are used as the input to the ELM. The ELM algorithm is then used to classify the catenary equipment. In this process, the impacts of the activation function, the number of hidden layer neurons and different models on the performance of the ELM are discussed in turn. Finally, the proposed method is compared with traditional methods in terms of classification accuracy and efficiency. Experimental results show that the number of feature dimensions decreases to 58% of the original number and the computational complexity is greatly decreased. Moreover, the reduced features and the few steps of the ELM improve the classification accuracy and speed. Noticeably, when the performance of the GA-ELM method is compared with that of the ELM method, the classification accuracy rate is 93.33% compared with 85.83% and the time consumption is 2.25 s compared with 8.85 s, respectively. That is to say, the proposed method not only decreases the number of features but also increases the classification accuracy and efficiency. This meets the needs of a real-time online condition monitoring system.


2021 ◽  
Vol 38 (4) ◽  
pp. 1229-1235
Author(s):  
Derya Avci ◽  
Eser Sert

Marble is one of the most popular decorative elements. Marble quality varies depending on its vein patterns and color, which are the two most important factors affecting marble quality and class. The manual classification of marbles is likely to lead to various mistakes due to different optical illusions. However, computer vision minimizes these mistakes thanks to artificial intelligence and machine learning. The present study proposes the Convolutional Neural Network- (CNN-) with genetic algorithm- (GA) Wavelet Kernel- (WK-) Extreme Learning Machine (ELM) (CNN–GA-WK-ELM) approach. Using CNN architectures such as AlexNet, VGG-19, SqueezeNet, and ResNet-50, the proposed approach obtained 4 different feature vectors from 10 different marble images. Later, Genetic Algorithm (GA) was used to optimize adjustable parameters, i.e. k, 1, and m, and hidden layer neuron number in Wavelet Kernel (WK) – Extreme Learning Machine (ELM) and to increase the performance of ELM. Finally, 4 different feature vector parameters were optimized and classified using the WK-ELM classifier. The proposed CNN–GA-WK-ELM yielded an accuracy rate of 98.20%, 96.40%, 96.20%, and 95.60% using AlexNet, SequeezeNet, VGG-19, and ResNet-50, respectively.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1375
Author(s):  
Celestine Iwendi ◽  
Joseph Henry Anajemba ◽  
Cresantus Biamba ◽  
Desire Ngabo

Web security plays a very crucial role in the Security of Things (SoT) paradigm for smart healthcare and will continue to be impactful in medical infrastructures in the near future. This paper addressed a key component of security-intrusion detection systems due to the number of web security attacks, which have increased dramatically in recent years in healthcare, as well as the privacy issues. Various intrusion-detection systems have been proposed in different works to detect cyber threats in smart healthcare and to identify network-based attacks and privacy violations. This study was carried out as a result of the limitations of the intrusion detection systems in responding to attacks and challenges and in implementing privacy control and attacks in the smart healthcare industry. The research proposed a machine learning support system that combined a Random Forest (RF) and a genetic algorithm: a feature optimization method that built new intrusion detection systems with a high detection rate and a more accurate false alarm rate. To optimize the functionality of our approach, a weighted genetic algorithm and RF were combined to generate the best subset of functionality that achieved a high detection rate and a low false alarm rate. This study used the NSL-KDD dataset to simultaneously classify RF, Naive Bayes (NB) and logistic regression classifiers for machine learning. The results confirmed the importance of optimizing functionality, which gave better results in terms of the false alarm rate, precision, detection rate, recall and F1 metrics. The combination of our genetic algorithm and RF models achieved a detection rate of 98.81% and a false alarm rate of 0.8%. This research raised awareness of privacy and authentication in the smart healthcare domain, wireless communications and privacy control and developed the necessary intelligent and efficient web system. Furthermore, the proposed algorithm was applied to examine the F1-score and precisionperformance as compared to the NSL-KDD and CSE-CIC-IDS2018 datasets using different scaling factors. The results showed that the proposed GA was greatly optimized, for which the average precision was optimized by 5.65% and the average F1-score by 8.2%.


Sign in / Sign up

Export Citation Format

Share Document