scholarly journals Energetic and Ecologic Heat Pumps Evaluation in Poland

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4980
Author(s):  
Sara Sewastianik ◽  
Andrzej Gajewski

The purpose of the work is a comparison of indirect carbon dioxide emissions between the different heat pump types that operate in Polish climate conditions. The analysis embraces air-to-water heat pump, ground-to-water heat pump, water-to-water heat pump and water-to-water heat pump with separating heat exchanger in the selected towns one in each climatic zone in the country. The study starts from determining seasonal coefficient of performance in each location using heating degree days to estimate seasonal heat demand. Seasonal coefficient of performance values enable an assessment which kind of heat pump meets the European Union requirements in every location. Eventually, indirect CO2 emissions that is caused by electrical energy production, are estimated for every heat pump in each location. Ground-to-water heat pump and water-to-water heat pump satisfy these requirements in each climatic zone in Poland. Air-to-water heat pump would be an energetic and ecological viable on a condition that substantial changes were done in Polish electrical energy mix.

Proceedings ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 33
Author(s):  
Sara Sewastianik ◽  
Andrzej Gajewski

The purpose of this work is a comparison of indirect carbon dioxide emissions between the different heat pump types that operate in Polish climate conditions. This analysis embraces an air–water heat pump (ASHP), ground–water heat pump (GSHP), water–water heat pump (WSHP), and a WSHP with a separating heat exchanger (SHE) in the selected towns, one in each climatic zone in the country. The study starts from a computation of heat demand and electrical energy consumption in every hour of the heating season using temperature values taken from a typical meteorological year (TMY). Then, seasonal coefficient of performance (SCOP) values are determined, which enables an assessment of which kind of heat pump meets the European Union requirements in every location. Eventually, indirect CO2 emissions that are caused by electrical energy production are estimated for every heat pump in each location.


2019 ◽  
Vol 116 ◽  
pp. 00023
Author(s):  
Andrzej Gajewski

To limit greenhouse gases emissions caused by energy production European Union (EU) prompts heat pump as heat generator which should decrease CO2 emissions to the atmosphere. Because of the climatic conditions and low efficiency of electrical energy production and transfer in Poland it could be possible a condensing gas boiler would emit less CO2. The analysis includes ten-year temperature measurements in Białystok where is more severe climate in Poland. Due to relatively high seasonal coefficient of performance (SCOP) value heat pumps can emit less CO2 than condensing gas boiler and can be applied as ecological heat generators.


Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 24
Author(s):  
Sara Sewastianik ◽  
Andrzej Gajewski

Inasmuch as the European Union promotes only energetically viable heat pumps in a given location, the aim of the work is an assessment of whether a ground-to-water heat pump (ground source heat pump: GSHP) can be considered as an ecological heat generator in Polish climatic conditions and those of the energy market. Here, as an estimator, the net seasonal coefficient of performance (SCOPnet) was selected. Estimation was done using 10-year temperature measurements. It was found that in heating mode SCOPnet value equaled 4.83, satisfying European Commission guidelines. According to the guidelines, the minimal SCOPnet value in Polish energy market conditions should exceed 3.5. CO2 emissions from the GSHP represented two-thirds of CO2 emissions of an air-to-water heat pump (air source heat pump: ASHP) in the same building. The ground heat pump thus meets the ecological heat generator conditions set by the European Commission.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1576
Author(s):  
Piotr Jadwiszczak ◽  
Jakub Jurasz ◽  
Bartosz Kaźmierczak ◽  
Elżbieta Niemierka ◽  
Wandong Zheng

Heating and cooling sectors contribute to approximately 50% of energy consumption in the European Union. Considering the fact that heating is mostly based on fossil fuels, it is then evident that its decarbonization is one of the crucial tasks for achieving climate change prevention goals. At the same time, electricity sectors across the globe are undergoing a rapid transformation in order to accommodate the growing capacities of non-dispatchable solar and wind generators. One of the proposed solutions to achieve heating sector decarbonization and non-dispatchable generators power system integration is sector coupling, where heat pumps are perceived as a perfect fit. Air source heat pumps enable a rapid improvement in local air quality by replacing conventional heating sources, but at the same time, they put additional stress on the power system. The emissions associated with heat pump operation are a combination of power system energy mix, weather conditions and heat pump technology. Taking the above into consideration, this paper presents an approach to estimate which of the mentioned factors has the highest impact on heat pump emissions. Due to low air quality during the heating season, undergoing a power system transformation (with a relatively low share of renewables) in a case study located in Poland is considered. The results of the conducted analysis revealed that for a scenario where an air-to-water (A/W) heat pump is supposed to cover space and domestic hot water load, its CO2 emissions are shaped by country-specific energy mix (55.2%), heat pump technology (coefficient of performance) (33.9%) and, to a lesser extent, by changing climate (10.9%). The outcome of this paper can be used by policy makers in designing decarbonization strategies and funding distribution.


Author(s):  
Mohammad Omar Temori ◽  
František Vranay

In this work, a mini review of heat pumps is presented. The work is intended to introduce a technology that can be used to income energy from the natural environment and thus reduce electricity consumption for heating and cooling. A heat pump is a mechanical device that transfers heat from one environmental compartment to another, typically against a temperature gradient (i.e. from cool to hot). In order to do this, an energy input is required: this may be mechanical, electrical or thermal energy. In most modern heat pumps, electrical energy powers a compressor, which drives a compression - expansion cycle of refrigerant fluid between two heat exchanges: a cold evaporator and a warm condenser. The efficiency or coefficient of performance (COP), of a heat pump is defined as the thermal output divided by the primary energy (electricity) input. The COP decreases as the temperature difference between the cool heat source and the warm heat sink increases. An efficient ground source heat pump (GSHP) may achieve a COP of around 4. Heat pumps are ideal for exploiting low-temperature environmental heat sources: the air, surface waters or the ground. They can deliver significant environmental (CO2) and cost savings.


2019 ◽  
Vol 11 (18) ◽  
pp. 5087 ◽  
Author(s):  
Gajewski ◽  
Gładyszewska-Fiedoruk ◽  
Krawczyk

The increasing global temperature has induced many states to limit carbon dioxide emissions. The European Union (EU) promotes replacing boilers with heat pumps. However, in countries where electricity is mainly supplied through fossil fuel combustion, condensing gas boilers may prove to be more ecological heat generators. Although this problem was investigated in a particular situation, an algorithm can be applied elsewhere. The running expenditures for the following different heat generators that are available in a location were estimated: water heat pump, brine heat pump, air heat pump, condensing gas boiler, condensing oil boiler, district heat network, and electrical grid. Furthermore, carbon dioxide emissions from local and distant sources were evaluated. The computations were based on hourly averaged external temperature measurements, which were performed by the Institute of Meteorology and Water Management—National Research Institute (IMGW-PIB) in a weather station in Białystok (Poland) for a ten-year period. Compared with a condensing gas boiler system, the air-to-water heat pump has higher operating costs and higher CO2 emissions. The brine heat pump (closed-loop ground-source heat pump) has lower operating costs, but higher CO2 emissions than the gas boiler system. The water heat pump (groundwater source heat pump) has the lowest operating costs and CO2 emissions of all the systems studied in this paper.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 137
Author(s):  
Florian Schlosser ◽  
Heinrich Wiebe ◽  
Timothy G. Walmsley ◽  
Martin J. Atkins ◽  
Michael R. W. Walmsley ◽  
...  

Heat pumps are the key technology to decarbonise thermal processes by upgrading industrial surplus heat using renewable electricity. Existing insight-based integration methods refer to the idealised Grand Composite Curve requiring the full exploitation of heat recovery potential but leave the question of how to deal with technical or economic limitations unanswered. In this work, a novel Heat Pump Bridge Analysis (HPBA) is introduced for practically targeting technical and economic heat pump potential by applying Coefficient of Performance curves into the Modified Energy Transfer Diagram (METD). Removing cross-Pinch violations and operating heat exchangers at minimum approach temperatures by combined application of Bridge Analysis increases the heat recovery rate and reduce the temperature lift to be pumped at the same time. The insight-based METD allows the individual matching of heat surpluses and deficits of individual streams with the capabilities and performance of different market-available heat pump concepts. For an illustrative example, the presented modifications based on HPBA increase the economically viable share of the technical heat pump potential from 61% to 79%.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 635 ◽  
Author(s):  
Limei Gai ◽  
Petar Sabev Varbanov ◽  
Timothy Gordon Walmsley ◽  
Jiří Jaromír Klemeš

To date, research on heat pumps (HP) has mainly focused on vapour compression heat pumps (VCHP), transcritical heat pumps (TCHP), absorption heat pumps, and their heat integration with processes. Few studies have considered the Joule cycle heat pump (JCHP), which raises several questions. What are the characteristics and specifics of these different heat pumps? How are they different when they integrate with the processes? For different processes, which heat pump is more appropriate? To address these questions, the performance and integration of different types of heat pumps with various processes have been studied through Pinch Methodology. The results show that different heat pumps have their own optimal application range. The new JCHP is suitable for processes in which the temperature changes of source and sink are both massive. The VCHP is more suitable for the source and sink temperatures, which are near-constant. The TCHP is more suitable for sources with small temperature changes and sinks with large temperature changes. This study develops an approach that provides guidance for the selection of heat pumps by applying Process Integration to various combinations of heat pump types and processes. It is shown that the correct choice of heat pump type for each application is of utmost importance, as the Coefficient of Performance can be improved by up to an order of magnitude. By recovering and upgrading process waste heat, heat pumps can save 15–78% of the hot utility depending on the specific process.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4313 ◽  
Author(s):  
Boahen ◽  
Choi

The use of cascade heat pumps for hot water generation has gained much attention in recent times. The big question that has attracted much research interest is how to enhance the performance and energy saving potential of these cascade heat pumps. This study therefore proposed a new cycle to enhance performance of the cascade heat pump by adopting an auxiliary heat exchanger (AHX) in desuperheater, heater and parallel positions at the low stage (LS) side. The new cascade cycle with AHX in desuperheater position was found to have better performance than that with AHX at heater and parallel positions. Compared to the conventional cycle, heating capacity and coefficient of performance (COP) of the new cascade cycle with AHX in desuperheater position increased up to 7.4% and 14.9% respectively.


Author(s):  
Yahya I. Sharaf-Eldeen

This work involves measurements, analyses, and evaluation of performance of air-source heat pump water heaters (HPWHs), and their impacts on electric utility loads. Two add-on, heat pumps (HPs) rated at 7000 BTU/h (2.051 kW) and 12,000 BTU/h (3.517 kW) were utilized. The HPs were retrofitted to two 50 gal (189.3 l) electric water heaters (EWHs) with their electric heating elements removed. A third standard EWH was used for comparison. The testing setups were fully instrumented for measurements of all pertinent parameters, including inlet and outlet water temperatures, inlet and outlet air temperatures of the HPs, temperature and humidity of the surrounding air, volume of water drawn out of the storage tanks, as well as the electric energy consumptions of the systems. Performance measures evaluated included the coefficient of performance, the energy factor (EF), and the first hour rating (FHR). The HPWH systems gave EFs ranging from 1.8 to 2.5 and corresponding energy savings (and reductions in utility peak loads) ranging from 49.0% to 63.0%, approximately. The values obtained in the summer months were, as expected, somewhat higher than those obtained in the winter ones. The average values of the EFs and energy savings (and reductions in utility peak loads) were about 2.1 and 56.0%, respectively. FHR results were much lower for the HPWHs compared with those for the standard EWH. These results show that HPWHs are much more efficient compared with standard EWHs. While the average value of the EF for the EWH was about 0.92, the HPWHs yielded EFs averaging more than 2.00, resulting in annual energy savings averaging more than 50%. The results also show that HPWHs are effective at reducing utility peak loads, in addition to providing substantial cost savings to consumers.


Sign in / Sign up

Export Citation Format

Share Document