scholarly journals Carbon Dioxide Emissions during Air, Ground, or Groundwater Heat Pump Performance in Białystok

2019 ◽  
Vol 11 (18) ◽  
pp. 5087 ◽  
Author(s):  
Gajewski ◽  
Gładyszewska-Fiedoruk ◽  
Krawczyk

The increasing global temperature has induced many states to limit carbon dioxide emissions. The European Union (EU) promotes replacing boilers with heat pumps. However, in countries where electricity is mainly supplied through fossil fuel combustion, condensing gas boilers may prove to be more ecological heat generators. Although this problem was investigated in a particular situation, an algorithm can be applied elsewhere. The running expenditures for the following different heat generators that are available in a location were estimated: water heat pump, brine heat pump, air heat pump, condensing gas boiler, condensing oil boiler, district heat network, and electrical grid. Furthermore, carbon dioxide emissions from local and distant sources were evaluated. The computations were based on hourly averaged external temperature measurements, which were performed by the Institute of Meteorology and Water Management—National Research Institute (IMGW-PIB) in a weather station in Białystok (Poland) for a ten-year period. Compared with a condensing gas boiler system, the air-to-water heat pump has higher operating costs and higher CO2 emissions. The brine heat pump (closed-loop ground-source heat pump) has lower operating costs, but higher CO2 emissions than the gas boiler system. The water heat pump (groundwater source heat pump) has the lowest operating costs and CO2 emissions of all the systems studied in this paper.

Proceedings ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 33
Author(s):  
Sara Sewastianik ◽  
Andrzej Gajewski

The purpose of this work is a comparison of indirect carbon dioxide emissions between the different heat pump types that operate in Polish climate conditions. This analysis embraces an air–water heat pump (ASHP), ground–water heat pump (GSHP), water–water heat pump (WSHP), and a WSHP with a separating heat exchanger (SHE) in the selected towns, one in each climatic zone in the country. The study starts from a computation of heat demand and electrical energy consumption in every hour of the heating season using temperature values taken from a typical meteorological year (TMY). Then, seasonal coefficient of performance (SCOP) values are determined, which enables an assessment of which kind of heat pump meets the European Union requirements in every location. Eventually, indirect CO2 emissions that are caused by electrical energy production are estimated for every heat pump in each location.


Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 24
Author(s):  
Sara Sewastianik ◽  
Andrzej Gajewski

Inasmuch as the European Union promotes only energetically viable heat pumps in a given location, the aim of the work is an assessment of whether a ground-to-water heat pump (ground source heat pump: GSHP) can be considered as an ecological heat generator in Polish climatic conditions and those of the energy market. Here, as an estimator, the net seasonal coefficient of performance (SCOPnet) was selected. Estimation was done using 10-year temperature measurements. It was found that in heating mode SCOPnet value equaled 4.83, satisfying European Commission guidelines. According to the guidelines, the minimal SCOPnet value in Polish energy market conditions should exceed 3.5. CO2 emissions from the GSHP represented two-thirds of CO2 emissions of an air-to-water heat pump (air source heat pump: ASHP) in the same building. The ground heat pump thus meets the ecological heat generator conditions set by the European Commission.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4980
Author(s):  
Sara Sewastianik ◽  
Andrzej Gajewski

The purpose of the work is a comparison of indirect carbon dioxide emissions between the different heat pump types that operate in Polish climate conditions. The analysis embraces air-to-water heat pump, ground-to-water heat pump, water-to-water heat pump and water-to-water heat pump with separating heat exchanger in the selected towns one in each climatic zone in the country. The study starts from determining seasonal coefficient of performance in each location using heating degree days to estimate seasonal heat demand. Seasonal coefficient of performance values enable an assessment which kind of heat pump meets the European Union requirements in every location. Eventually, indirect CO2 emissions that is caused by electrical energy production, are estimated for every heat pump in each location. Ground-to-water heat pump and water-to-water heat pump satisfy these requirements in each climatic zone in Poland. Air-to-water heat pump would be an energetic and ecological viable on a condition that substantial changes were done in Polish electrical energy mix.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6116
Author(s):  
Pablo Ponce ◽  
Cristiana Oliveira ◽  
Viviana Álvarez ◽  
María de la Cruz del Río-Rama

From an empirical point of view, the liberalization of the internal energy market reduces carbon dioxide emissions, promoting a wider range of renewable energy sources. The aim of this paper is to examine the effect of the liberalization of the internal energy market on CO2 emissions, which was implemented in the European Union in 2011. The research data cover 27 countries of the European Union during the period 2004–2017 and was processed by estimating a two-way effects econometric model. The results suggest that the liberalization of the internal energy market is negatively related to CO2 emissions; the policy was effective in reducing CO2 emissions and, therefore, slowing down climate change. This result is significant at the level of the European Union, and in high-income countries since the year the policy was implemented, being different in the upper-middle-income countries, which begins to be effective after two years, which is due to the economic characteristics of the countries. The public policies to be implemented to reduce carbon dioxide emissions should focus on reducing the barriers imposed on foreign trade, which prevent efficient use of resources and providing financial and operating facilities to renewable energy providers in order to stimulate their production and consumption.


2021 ◽  
Vol 13 (9) ◽  
pp. 4599
Author(s):  
Mohd Alsaleh ◽  
Muhammad Mansur Abdulwakil ◽  
Abdul Samad Abdul-Rahim

Under the current European Union (EU) constitution approved in May 2018, EU countries ought to guarantee that estimated greenhouse-gas releases from land use, land-use change, or forestry are entirely compensated by an equivalent accounted removal of carbon dioxide (CO2) from the air during the period between 2021 and 2030. This study investigates the effect of sustainable hydropower production on land-use change in the European Union (EU28) region countries during 1990–2018, using the fully modified ordinary least squares (FMOLS). The results revealed that land-use change incline with an increase in hydropower energy production. In addition, economic growth, carbon dioxide emissions, and population density are found to be increasing land-use changes, while institutional quality is found to be decreasing land-use change significantly. The finding implies that land-use change in EU28 region countries can be significantly increased by mounting the amount of hydropower energy production to achieve Energy Union aims by 2030. This will finally be spread to combat climate change and environmental pollution. The findings are considered robust as they were checked with DOLS and pooled OLS. The research suggests that the EU28 countries pay attention to the share of hydropower in their renewable energy combination to minimize carbon releases. Politicians and investors in the EU28 region ought to invest further in the efficiency and sustainability of hydropower generation to increase its production and accessibility without further degradation of forest and agricultural conditions. The authorities of the EU28 region should emphasize on efficiency and sustainability of hydropower energy with land-use management to achieve the international commitments for climate, biodiversity, and sustainable development, reduce dependence on fossil fuel, and energy insecurity.


2021 ◽  
Vol 13 (7) ◽  
pp. 3660
Author(s):  
Rathna Hor ◽  
Phanna Ly ◽  
Agusta Samodra Putra ◽  
Riaru Ishizaki ◽  
Tofael Ahamed ◽  
...  

Traditional Cambodian food has higher nutrient balances and is environmentally sustainable compared to conventional diets. However, there is a lack of knowledge and evidence on nutrient intake and the environmental greenness of traditional food at different age distributions. The relationship between nutritional intake and environmental impact can be evaluated using carbon dioxide (CO2) emissions from agricultural production based on life cycle assessment (LCA). The objective of this study was to estimate the CO2 equivalent (eq) emissions from the traditional Cambodian diet using LCA, starting at each agricultural production phase. A one-year food consumption scenario with the traditional diet was established. Five breakfast (BF1–5) and seven lunch and dinner (LD1–7) food sets were consumed at the same rate and compared using LCA. The results showed that BF1 and LD2 had the lowest and highest emissions (0.3 Mt CO2 eq/yr and 1.2 Mt CO2 eq/yr, respectively). The food calories, minerals, and vitamins met the recommended dietary allowance. The country’s existing food production system generates CO2 emissions of 9.7 Mt CO2 eq/yr, with the proposed system reducing these by 28.9% to 6.9 Mt CO2 eq/yr. The change in each food item could decrease emissions depending on the type and quantity of the food set, especially meat and milk consumption.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1576
Author(s):  
Piotr Jadwiszczak ◽  
Jakub Jurasz ◽  
Bartosz Kaźmierczak ◽  
Elżbieta Niemierka ◽  
Wandong Zheng

Heating and cooling sectors contribute to approximately 50% of energy consumption in the European Union. Considering the fact that heating is mostly based on fossil fuels, it is then evident that its decarbonization is one of the crucial tasks for achieving climate change prevention goals. At the same time, electricity sectors across the globe are undergoing a rapid transformation in order to accommodate the growing capacities of non-dispatchable solar and wind generators. One of the proposed solutions to achieve heating sector decarbonization and non-dispatchable generators power system integration is sector coupling, where heat pumps are perceived as a perfect fit. Air source heat pumps enable a rapid improvement in local air quality by replacing conventional heating sources, but at the same time, they put additional stress on the power system. The emissions associated with heat pump operation are a combination of power system energy mix, weather conditions and heat pump technology. Taking the above into consideration, this paper presents an approach to estimate which of the mentioned factors has the highest impact on heat pump emissions. Due to low air quality during the heating season, undergoing a power system transformation (with a relatively low share of renewables) in a case study located in Poland is considered. The results of the conducted analysis revealed that for a scenario where an air-to-water (A/W) heat pump is supposed to cover space and domestic hot water load, its CO2 emissions are shaped by country-specific energy mix (55.2%), heat pump technology (coefficient of performance) (33.9%) and, to a lesser extent, by changing climate (10.9%). The outcome of this paper can be used by policy makers in designing decarbonization strategies and funding distribution.


Author(s):  
Tomas Baležentis ◽  
Daiva Makutėnienė

The literature suggests different approaches towards modelling of the environmental impact caused by the production processes. The present paper attempts to establish a framework for multicriteria comparison of agricultural sectors of the European Union Member States and identify the performance gaps in terms of energy-related carbon dioxide emission. The research relies on the two approaches, viz. the by-production approach and the multi-criteria decision making approach. The environmental performance indicators were evaluated in regards to the desirable output (gross value added), inputs, and the undesirable output (carbon dioxide emission). The results indicate that Slovakia, Estonia, Lithuania, and Hungary should attempt to improve their carbon factors by implementing cleaner energy technologies. The combinations of by-production sub-indices suggest that productivity gains are more important for Sweden, Belgium, Poland, and France. Czech Republic, Latvia, and Finland are specific with low performance in terms of both the intended production and the undesirable output. The MCDM approach identified similar trends in performance as suggested by country ranking and correlation analysis.


2008 ◽  
Vol 8 (2) ◽  
pp. 7373-7389 ◽  
Author(s):  
A. Stohl

Abstract. Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who – like other scientists – rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of carbon dioxide (CO2). In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU) caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc.) were calculated for the years 2005–2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.


2021 ◽  
Author(s):  
Jean Baptiste Aboyitungiye ◽  
Suryanto Suryanto ◽  
Evi Gravitiani

Abstract The recent climatic phenomena observed in developing countries since the 2000s have raised concerns, fears, and debates within the international community and economists. Human activities are largely responsible for atmospheric warming through their emissions of CO2 and polluting substances with dramatic consequences and numerous losses of human life in some countries. Using panel data covering the 2000-2016 period, this study investigated the social vulnerability due to the CO2 emissions through an empirical study of CO2’s determinants in selected countries of sub-Sahara African and Southeast Asian countries. The STIRPAT model gave out the result that; explanatories causes of carbon dioxide emissions are different in the two regions: the agriculture-forestry and fishing value-added, and human development index have a strong explanatory power on CO2 emissions in the ASEAN countries, the per-capita domestic product has a positive and significant influence on carbon emissions in the SSA countries, ceteris paribus, but was statistically insignificant in the ASEAN countries. The growing population decreases carbon emissions in the SSA selected countries while is not statically significant in the ASEAN countries. There is therefore a kind of double penalty: those who suffer, and will suffer the most from the impacts of climate change due to CO2 emissions, are those who contribute the least to the problem. These results provide insight into future strategies for the mitigation of climatic hazards already present in some places and potential for others which will be felt on different scales across the regions. Some of the inevitable redistributive effects of those risks can be corrected by providing financial support to the poorest populations hardest hit by natural disasters.


Sign in / Sign up

Export Citation Format

Share Document