scholarly journals Scaling-Up the Anaerobic Digestion of Pretreated Microalgal Biomass within a Water Resource Recovery Facility

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5484
Author(s):  
Rubén Díez-Montero ◽  
Lucas Vassalle ◽  
Fabiana Passos ◽  
Antonio Ortiz ◽  
María Jesús García-Galán ◽  
...  

Microalgae-based wastewater treatment plants are low-cost alternatives for recovering nutrients from contaminated effluents through microalgal biomass, which may be subsequently processed into valuable bioproducts and bioenergy. Anaerobic digestion for biogas and biomethane production is the most straightforward and applicable technology for bioenergy recovery. However, pretreatment techniques may be needed to enhance the anaerobic biodegradability of microalgae. To date, very few full-scale systems have been put through, due to acknowledged bottlenecks such as low biomass concentration after conventional harvesting and inefficient processing into valuable products. The aim of this study was to evaluate the anaerobic digestion of pretreated microalgal biomass in a demonstration-scale microalgae biorefinery, and to compare the results obtained with previous research conducted at lab-scale, in order to assess the scalability of this bioprocess. In the lab-scale experiments, real municipal wastewater was treated in high rate algal ponds (2 × 0.47 m3), and harvested microalgal biomass was thickened and digested to produce biogas. It was observed how the methane yield increased by 67% after implementing a thermal pretreatment step (at 75 °C for 10 h), and therefore the very same pretreatment was applied in the demonstration-scale study. In this case, agricultural runoff was treated in semi-closed tubular photobioreactors (3 × 11.7 m3), and harvested microalgal biomass was thickened and thermally pretreated before undergoing the anaerobic digestion to produce biogas. The results showed a VS removal of 70% in the reactor and a methane yield up to 0.24 L CH4/g VS, which were similar to the lab-scale results. Furthermore, photosynthetic biogas upgrading led to the production of biomethane, while the digestate was treated in a constructed wetland to obtain a biofertilizer. In this way, the demonstration-scale plant evidenced the feasibility of recovering resources (biomethane and biofertilizer) from agricultural runoff using microalgae-based systems coupled with anaerobic digestion of the microalgal biomass.

2008 ◽  
Vol 3 (3) ◽  
Author(s):  
O. González-Barceló ◽  
S. González-Martínez

Biological aerated filtration is a viable option for small municipal wastewater treatment plants. A low cost filter media was obtained by triturating volcanic rock. An apparent porosity of 46 % and a specific surface area of 395 m2/m3·d were obtained once the filter was packed by using a grain size of 8.2 mm. The performance of the system, operated as a biological filter, was evaluated under an average organic load of 2.6±0.4 kgCODT/m3·d (6.7±1.1 gCODT/m2·d) without primary and secondary settling. The average CODT decreased from 220 mg/l in the influent to 88 mg/l in the effluent and the CODD was decreased from 148 mg/l in the influent to 50 mg/l in the effluent. The filter media, in combination with the biofilm, allowed a 75 % TSS removal. The ammonia nitrogen decreased from 51 mg/l in the influent to 33 mg/l in the effluent. The maximum flux coefficients of 9.3gCODdissolved/m2·d and 2.9gNH4-N/m2·d at the biofilm surface were used to simulate, with the Michaelis-Menten model, the profiles of dissolved COD, ammonium and nitrates through the aerated filter. It was possible to conclude that the backwashing procedure removed the excess biomass and was responsible for a homogeneous distribution of heterotrophic and autotrophic microorganisms along the filter depth.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 590
Author(s):  
Aiban Abdulhakim Saeed Ghaleb ◽  
Shamsul Rahman Mohamed Kutty ◽  
Gasim Hayder Ahmed Salih ◽  
Ahmad Hussaini Jagaba ◽  
Azmatullah Noor ◽  
...  

Man-made organic waste leads to the rapid proliferation of pollution around the globe. Effective bio-waste management can help to reduce the adverse effects of organic waste while contributing to the circular economy at the same time. The toxic oily-biological sludge generated from oil refineries’ wastewater treatment plants is a potential source for biogas energy recovery via anaerobic digestion. However, the oily-biological sludge’s carbon/nitrogen (C/N) ratio is lower than the ideal 20–30 ratio required by anaerobic digestion technology for biogas production. Sugarcane bagasse can be digested as a high C/N co-substrate while the oily-biological sludge acts as a substrate and inoculum to improve biogas production. In this study, the best C/N with co-substrate volatile solids (VS)/inoculum VS ratios for the co-digestion process of mixtures were determined empirically through batch experiments at temperatures of 35–37 °C, pH (6–8) and 60 rpm mixing. The raw materials were pre-treated mechanically and thermo-chemically to further enhance the digestibility. The best condition for the sugarcane bagasse delignification process was 1% (w/v) sodium hydroxide, 1:10 solid-liquid ratio, at 100 °C, and 150 rpm for 1 h. The results from a 33-day batch anaerobic digestion experiment indicate that the production of biogas and methane yield were concurrent with the increasing C/N and co-substrate VS/inoculum VS ratios. The total biogas yields from C/N 20.0 with co-substrate VS/inoculum VS 0.06 and C/N 30.0 with co-substrate VS/inoculum VS 0.18 ratios were 2777.0 and 9268.0 mL, respectively, including a methane yield of 980.0 and 3009.3 mL, respectively. The biogas and methane yield from C/N 30.0 were higher than the biogas and methane yields from C/N 20.0 by 70.04 and 67.44%, respectively. The highest biogas and methane yields corresponded with the highest C/N with co-substrate VS/inoculum VS ratios (30.0 and 0.18), being 200.6 mL/g VSremoved and 65.1 mL CH4/g VSremoved, respectively.


1994 ◽  
Vol 30 (4) ◽  
pp. 211-214 ◽  
Author(s):  
E. Brands ◽  
M. Liebeskind ◽  
M. Dohmann

This study shows a comparison of important parameters for dynamic simulation concerning the highrate and low-rate activated sludge tanks of several municipal wastewater treatment plants. The parameters for the dynamic simulation of the single-stage process are quite well known, but parameters for the high-ratellow-rate activated sludge process are still missi ng, although a considerable number of wastewater treatment plants are designed and operated that way. At present any attempt to simulate their operation is restricted to the second stage due to missing data concerning growth rate, decay rate, yield coefficient and others.


2001 ◽  
Vol 44 (1) ◽  
pp. 105-112 ◽  
Author(s):  
M. Burde ◽  
F. Rolf ◽  
F. Grabowski

The absence of large rivers with rather high niveau of self purifying effect in parts of east Germany leads to a discharging of the effluent of wastewater treatment plants into the groundwater in many cases. One useful consequence is the idea of realisation of decentralised measures and concepts in urban water resources management concerning municipal wastewater as well as rainfall, precipitation. At the same time, only the upper soil zone - a few decimetres - is water - saturated and thus discharge effective, even when extreme rainfall takes place. Underneath, however, there generally exists an unsaturated soil zone, which is up to now a rather unexplored retardation element of the hydrologic- and substrate-cycle. Nutrient removal in small wastewater treatment plants that are emptying into ground waters is often beneficial. The presented studies optimised an inexpensive method of subsequent enhanced wastewater treatment. The developed reactor is similar to a concentrated subsoil passage. The fixed bed reactor is divided in two sections to achieve aerobic and anoxic conditions for nitrification/denitrification processes. To enhance phosphorus removal, ferrous particles are put into the aerobic zone. Two series of column tests were carried out and a technical pilot plant was built to verify the efficiency of the process. The results show that this method can be implemented successfully.


2019 ◽  
Vol 54 (4) ◽  
pp. 265-277 ◽  
Author(s):  
Peter Roebuck ◽  
Kevin Kennedy ◽  
Robert Delatolla

Abstract Anaerobic digestion (AD) is a proven technology for energy production from the stabilization and reduction of sewage waste. The AD and impact of ultrasonic pretreatment of four waste activated sludges (WASs) from conventional and three non-conventional municipal wastewater treatment plants were investigated. WAS from a conventional activated sludge (CAS) system, a rotating biological contactor (RBC), a lagoon, and a nitrifying moving-bed biofilm reactor (MBBR) were pretreated with ultrasonic energies of 800–6,550 kJ/kg total solids to illustrate the impact of sludge type and ultrasonic pretreatment on biogas production (BGP), solubilization, and digestion kinetics. The greatest increase in BGP over the control of pretreated sludge did not coincide consistently with greater sonication energy but occurred within a solubilization range of 2.9–7.4% degree of disintegration and are as follows: 5% ± 3 biogas increase for CAS, 12% ± 9 for lagoon, 15% ± 2 for nitrifying MBBR, and 20% ± 2 for RBC. The effect of sonication on digestion kinetics was inconclusive with the application of modified Gompertz, reaction curve, and first-order models to biogas production. These results illustrate the unique response of differing sludges to the same levels of sonication energies. This article has been made Open Access thanks to the kind support of CAWQ/ACQE (https://www.cawq.ca).


2004 ◽  
Vol 49 (2) ◽  
pp. 191-199 ◽  
Author(s):  
J.B. Neethling ◽  
M. Benisch

Struvite deposition is a common problem in municipal wastewater treatment plants and can be signi?cant if not anticipated, but struvite deposits are completely manageable if properly addressed. This paper summarises experiences from a number of facilities that have dealt successfully with struvite problems, elaborates on the interrelations between secondary treatment and anaerobic digestion, and outlines an approach to control struvite and available alternatives.


2018 ◽  
Vol 78 (1) ◽  
pp. 125-131 ◽  
Author(s):  
Glenda Cea-Barcia ◽  
Jaime Pérez ◽  
Germán Buitrón

Abstract The anaerobic co-digestion of microalga-bacteria biomass and papaya waste (MAB/PW) was evaluated under semi-continuous conditions. Microalgae-bacteria biomass was obtained from a high rate algal pond fed with municipal wastewater and artificially illuminated. The co-digestion of MAB/PW was evaluated using a 1:1 (w/w) ratio and an organic loading rate of 1.1 ± 0.1 g COD/L/d. Enzymatic activity assays of papain were performed in the feeding to determine the activity of this enzyme in the substrate mixture. A methane yield of 0.55 L CH4/gVS and 68% of total volatile solid removal were observed. The volumetric productivity was 0.30 ± 0.03 L CH4/L/d with a methane content of 71%. It was observed that papaya waste was a suitable co-substrate because it maintained a low ammonium concentration, decreasing the risk of inhibition due to ammonia and then increasing the methane yield of the microalgae-bacteria biomass compared to the biomass alone. The pretreatment effect by the addition of papaya waste on the microalgae-bacteria biomass was supported by the papain activity remaining in the substrate.


2006 ◽  
Vol 54 (4) ◽  
pp. 119-128 ◽  
Author(s):  
M.S. Fountoulakis ◽  
K. Stamatelatou ◽  
D.J. Batstone ◽  
G. Lyberatos

Di-ethylhexyl phthalate (DEHP) has commonly been found in the sludge of municipal wastewater treatment plants especially during anaerobic processing. It is slowly biodegradable under anaerobic conditions. Due to its high hydrophobicity, sorption-desorption processes can be rate-limiting for the compound biodegradation. In this study, the anaerobic biodegradation of DEHP was investigated through batch kinetic experiments and dynamic transitions of a continuous stirred tank reactor (CSTR) fed with secondary sludge contaminated with DEHP. A widely accepted model (ADM1) was used to fit the anaerobic digestion of secondary sludge and was properly extended to account for DEHP removal, in which mass transfer processes are also involved. It was shown that DEHP removal was limited by the transfer of DEHP within the solid fraction. The criterion selected for the distinction of the two sites was whether the compound sorbed in those sites was bioavailable for biodegradation or not. Thus, the aqueous phase and the surface of the biosolids were considered as suitable sites for the compound to be bioavailable and the main bulk of the solid matrix was regarded as sites, where the compound remains “protected” against biodegradation. The model, fitted to the batch experimental data, was able to predict DEHP removal in the CSTR operated at various HRTs.


Sign in / Sign up

Export Citation Format

Share Document