scholarly journals Catchment Based Aerodynamic Performance Analysis of Small Wind Turbine Using a Single Blade Concept for a Low Cost of Energy

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5838
Author(s):  
Hailay Kiros Kelele ◽  
Torbjørn Kirstian Nielsen ◽  
Lars Froyd ◽  
Mulu Bayray Kahsay

For low and medium wind conditions, there is a possibility to harness maximum wind potential reducing the cost of energy by employing catchment-based wind turbine designs. This paper aims to study catchment-based small wind turbine aerodynamic performance for improved efficiency and reduced cost of energy. Hence, design parameters are considered based on specific conditions within a catchment area. The bins and statistical methods implemented with Weibull distribution of wind data for selected sites to characterize the wind conditions and a weighted average method proposed to create representative wind conditions implementing a single blade concept. The blade element method was applied using Matlab code (version R2017a, MathWorks Inc., Natick, MA, US) for aerodynamic design and analysis, and computational fluid dynamics employed using ANSYS—Fluent (version 18.1, ANSYS Inc., Canonsburg, PA, USA) for validation. The performance of the designed blade is evaluated based on annual energy production, capacity factor and power coefficient. Then, for site-specific wind conditions, yearly energy production, and relative cost of energy are examined against rated power. Appropriate rated power for a low cost of energy identified and performance measures evaluated for each site. As a result, a maximum power coefficient of around 51.8% achieved at a design wind speed of 10 m/s, and higher capacity factors of 28% and 50.9% respectively attained for the low and high wind conditions at the proposed rated powers. Therefore, for different wind condition sites, enhanced performance at a low cost of energy could be achieved using a single blade concept at properly selected rated powers employing suitable design conditions and procedures.

Author(s):  
Mahasidha Birajdar ◽  
Sandip Kale ◽  
S. N. Sapali

Wind is a one of the clean resources of energy and has the ability to contribute a considerable share in growing world energy consumption. The small wind turbine plays a vital role in fulfillment of energy needs preferably for household purpose. In order to unleash the budding of applicability of small wind turbine, it is necessary to improve its performance. The performance of a small wind turbine can be distinguished by the manners in which power, thrust and torque vary with the wind speed. The wind power indicates the amount of energy captured by the wind turbine rotor. It is convenient to express the performance of small wind turbine by means of non-dimensional performance curves, therefore in this paper the most graphs are drawn to power, thrust and torque coefficients as a function of the tip speed ratio. This paper presents the effect of design parameters such as the tip speed ratio, angle of attack, wind speed, solidity, number of blades, etc. on the aerodynamic performance of small wind turbine and proposes the optimum values of these parameters for the newly designed blade. The new designed blade consists of two new airfoils and named as IND 15045 and IND 09848. This new profile blade is designed for a wind turbine of 1 kW rated power. The blade is divided into ten sections. The designed length of blade is 1.5 m and it is made using IND 15045 airfoils at three root sections and IND 09848 airfoils for remaining seven sections. Q-Blade is used for the numerical simulation of wind turbine airfoils and blade. It is integrated tool of XFOIL and blade element momentum theory of wind turbine blade design. Also the effect of constant rotational speed operation, effect of stall regulation effect of rotational speed change and the effect of solidity on the performance of wind turbine is discussed. This paper delivers a broad view of perception for design of small wind turbine and parameter selection for the new wind turbine blade. Also in this paper the effect of different losses viz. tip losses, drag losses, stall losses and hub losses on the small wind turbine are discussed. The efficiency of the small wind turbine varies significantly with wind speed, but it would be designed such a way that maximized efficiencies are achieved at the wind speed where the maximum energy is available.


2019 ◽  
Vol 44 (1) ◽  
pp. 21-32 ◽  
Author(s):  
Yassine Khalil ◽  
Lhoussaine Tenghiri ◽  
Farid Abdi ◽  
Anas Bentamy

The aerodynamic performance of horizontal-axis wind turbines is strongly dependent on many parameters, among which the airfoil type and the blade geometry (mainly defined by the chord and the twist distributions) are considered the most critical ones. In this article, an approach giving the appropriate airfoil for a small wind turbine design was conducted by performing an aerodynamic improvement of the blade’s airfoil. First, a preliminary design of the rotor blades of a small wind turbine (11 kW) was conducted using the small wind turbine rotor design code. This preliminary approach was done for different airfoils, and it resulted in a maximum power coefficient of 0.40. Then, the aerodynamic efficiency of the wind turbine was improved by modifying the geometry of the airfoils. This technique targets the optimization of the lift-to-drag ratio (Cl/Cd) of the airfoil within a range of angles of attack. Also, a non-uniform rational B-spline approximation of the airfoil was adopted in order to reduce the number of the design variables of the optimization. This methodology determined the best airfoil for the design of a small wind turbine, and it gave an improved power coefficient of 0.42.


2021 ◽  
pp. 0309524X2110039
Author(s):  
Amgad Dessoky ◽  
Thorsten Lutz ◽  
Ewald Krämer

The present paper investigates the aerodynamic and aeroacoustic characteristics of the H-rotor Darrieus vertical axis wind turbine (VAWT) combined with very promising energy conversion and steering technology; a fixed guide-vanes. The main scope of the current work is to enhance the aerodynamic performance and assess the noise production accomplished with such enhancement. The studies are carried out in two phases; the first phase is a parametric 2D CFD simulation employing the unsteady Reynolds-averaged Navier-Stokes (URANS) approach to optimize the design parameters of the guide-vanes. The second phase is a 3D CFD simulation of the full turbine using a higher-order numerical scheme and a hybrid RANS/LES (DDES) method. The guide-vanes show a superior power augmentation, about 42% increase in the power coefficient at λ = 2.75, with a slightly noisy operation and completely change the signal directivity. A remarkable difference in power coefficient is observed between 2D and 3D models at the high-speed ratios stems from the 3D effect. As a result, a 3D simulation of the capped Darrieus turbine is carried out, and then a noise assessment of such configuration is assessed. The results show a 20% increase in power coefficient by using the cap, without significant change in the noise signal.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 776
Author(s):  
Byunghui Kim ◽  
Sang-June Park ◽  
Seokyoung Ahn ◽  
Myung-Gon Kim ◽  
Hyung-Gun Yang ◽  
...  

Although mega-watt class onshore and offshore wind power systems are used to generate power due to their cost-effectiveness, small wind power systems are important for household usages. Researchers have focused on aerodynamic characteristics as a conceptual design from their previous studies on Archimedes spiral wind turbines. Here, we verified the design of a small wind turbine AWM-750D (100 W capacity) via both numerical simulation and experimentation. We used commercial code ANSYS CFX for numerical simulation and compared turbulence models and surface roughness for determining the performance. To obtain reliable and robust blades, we analyzed the effective manufacturing method with Moldflow. Through a test with an open-suction type atmospheric boundary layer wind tunnel, we varied wind speed from 4.0 m/s to the rated value of 12.5 m/s and obtained 106 W, equivalent to a power coefficient of 0.205. In addition, we compared the numerical and experimental power vs. rotational speed and found the former is 6.5% lower than the latter. In this study, we proved that numerical simulations can act as design verification methods to predict wind turbine performances and reliable manufacturing. Through our research, we provided the prototype of a small wind turbine with 100 W to act as an efficient electric power supplier for households and also the stable manufacturing process for complex spiral blades using injection molding.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yiannis A. Katsigiannis ◽  
George S. Stavrakakis ◽  
Christodoulos Pharconides

This paper examines the effect of different wind turbine classes on the electricity production of wind farms in two areas of Cyprus Island, which present low and medium wind potentials: Xylofagou and Limassol. Wind turbine classes determine the suitability of installing a wind turbine in a particulate site. Wind turbine data from five different manufacturers have been used. For each manufacturer, two wind turbines with identical rated power (in the range of 1.5 MW–3 MW) and different wind turbine classes (IEC II and IEC III) are compared. The results show the superiority of wind turbines that are designed for lower wind speeds (IEC III class) in both locations, in terms of energy production. This improvement is higher for the location with the lower wind potential and starts from 7%, while it can reach more than 50%.


2017 ◽  
Author(s):  
Trey W. Riddle ◽  
Jared W. Nelson ◽  
Douglas S. Cairns

Abstract. Given that wind turbine blades are such large structures, the use of low-cost composite manufacturing processes and materials has been necessary for the industry to be cost competitive. Since these manufacturing methods can lead to inclusion of unwanted defects, potentially reducing blade life, the Blade Reliability Collaborative tasked the Montana State University Composites Group with assessing the effects of these defects. Utilizing the results of characterization and mechanical testing studies, probabilistic models were developed to assess the reliability of a wind blade with known defects. As such, defects were found to best be assessed as design parameters in a parametric probabilistic analysis allowing for establishment of a consistent framework to validate categorization and analysis. Monte Carlo simulations were found to adequately describe the probability of failure of composite blades with included defects. By treating defects as random variables, the approaches utilized indicate the level of conservation used in blade design may be reduced when considering fatigue. In turn, safety factors may be reduced as some of the uncertainty surrounding blade failure is reduced when analysed with application specific data. Overall, the results indicate that characterization of defects and reduction of design uncertainty is possible for wind turbine blades.


2020 ◽  
Vol 23 (4) ◽  
pp. 771-780
Author(s):  
Anh Ngoc VU ◽  
Ngoc Son Pham

This study describes an effectively analytic methodology to investigate the aerodynamic performance of H vertical axis wind turbine (H-VAWT). An in-house code based on double multiple stream tube theory (DMST) coupled with dynamic stall and wake correction is implemented to estimate the power coefficient. Design optimization of airfoil shape is conducted to study the influences of the dynamic stall and turbulent wakes. Airfoil shape is universally investigated by using the Class/Shape function transformation method. The airfoil study shows that the upper curve tends to be less convex than the lower curve in order to extract more energy of the wind upstream and generate less drag of the blade downstream. The optimal results show that the power coefficient increases by 6.5% with the new airfoil shape.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3330 ◽  
Author(s):  
Jianhua Xu ◽  
Zhonghua Han ◽  
Xiaochao Yan ◽  
Wenping Song

A new airfoil family, called NPU-MWA (Northwestern Polytechnical University Multi-megawatt Wind-turbine A-series) airfoils, was designed to improve both aerodynamic and structural performance, with the outboard airfoils being designed at high design lift coefficient and high Reynolds number, and the inboard airfoils being designed as flat-back airfoils. This article aims to design a multi-megawatt wind turbine blade in order to demonstrate the advantages of the NPU-MWA airfoils in improving wind energy capturing and structural weight reduction. The distributions of chord length and twist angle for a 5 MW wind turbine blade are optimized by a Kriging surrogate model-based optimizer, with aerodynamic performance being evaluated by blade element-momentum theory. The Reynolds-averaged Navier–Stokes equations solver was used to validate the improvement in aerodynamic performance. Results show that compared with an existing NREL (National Renewable Energy Laboratory) 5 MW blade, the maximum power coefficient of the optimized NPU 5 MW blade is larger, and the chord lengths at all span-wise sections are dramatically smaller, resulting in a significant structural weight reduction (9%). It is shown that the NPU-MWA airfoils feature excellent aerodynamic and structural performance for the design of multi-megawatt wind turbine blades.


Sign in / Sign up

Export Citation Format

Share Document