scholarly journals The Effect of Experimental Conditions on Methane (95%)–Propane (5%) Hydrate Formation

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6710
Author(s):  
Sotirios Nik. Longinos ◽  
Mahmut Parlaktuna

In the present study, the effect of different kinds of impellers with different baffles or no baffle was investigated. Up-pumping pitched blade turbine (PBTU) and Rushton turbine (RT) were the two types of impellers tested. The reactor was equipped with different designs of baffles: full, half and surface baffles or no baffles. Single (PBTU or RT) and dual (PBTU/PBTU or RT/RT) use of impellers with full (FB), half (HB), surface (SB) and no baffle (NB) combinations formed two sets of 16 experiments. There was estimation of rate of hydrate formation, induction time, hydrate productivity, overall power consumption, split fraction and separation factor. In both single and dual impellers, the results showed that RT experiments are better compared to PBTU in rate of hydrate formation. The induction time is almost the same since we are deep in the equilibrium line while hydrate productivity values are higher in PBTU compared to RT experiments. As general view RT experiments consume more energy compared to PBTU experiments.

Author(s):  
Sotirios Nik Longinos ◽  
Mahmut Parlaktuna

Abstract This study investigates the effects of types of impellers and baffles on methane hydrate formation. Induction time, water conversion to hydrates (hydrate yield), hydrate formation rate and hydrate productivity are components that were estimated. The initial hydrate formation rate is generally higher with the use of Ruston turbine (RT) with higher values 28.93 × 10−8 mol/s in RT/RT with full baffle (FB) experiment, but the decline rate of hydrate formation was also high compared to up-pumping pitched blade turbine (PBTU). Power consumption is higher also in RT/RT and PBT/RT with higher value 392,000 W in PBT/RT with no baffle (NB) experiment compared to PBT/PBT and RT/PBT experiments respectively. Induction time values are higher in RT/RT experiments compared to PBT/PBT ones. Hydrate yield is always smaller when there is no baffle in all four groups of experiments while the higher values exist in experiments with full baffle. It should be noticed that PBT is the same with PBTU, since all experiments with mixed flow have upward trending.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5380
Author(s):  
Yu Liu ◽  
Xiangrui Liao ◽  
Changrui Shi ◽  
Zheng Ling ◽  
Lanlan Jiang

Hydrate-based CO2 capture from large emission sources is considered a promising process for greenhouse gas mitigation. The addition of nanoparticles may promote or inhibit the formation of hydrates. In this work, CO2 hydrate formation experiments were performed in a dual-cell high-pressure reactor. Non-modified, hydrophilic modified and hydrophobic modified aluminum oxide (Al2O3) nanoparticles at different concentrations were added to assess their promoting or inhibitory effects on CO2 hydrate formation. The equilibrium temperature and pressure, induction time, and total gas consumption during CO2 hydrate formation were measured. The results show that the presence of Al2O3 nanoparticles exerts little effect on the phase equilibrium of CO2 hydrates. Under the experimental conditions, the addition of all Al2O3 nanoparticles imposes an inhibitory effect on the final gas consumption except for the 0.01 wt% addition of hydrophilic modified Al2O3 nanoparticles. The induction time required for the nucleation of CO2 hydrates mainly ranges from 70 to 90 min in the presence of Al2O3 nanoparticles. Compared to the absence of nanoparticles, the addition of non-modified and hydrophilic modified Al2O3 nanoparticle reduces the induction time. However, the hydrophobic modified Al2O3 nanoparticles extend the induction time.


2021 ◽  
Vol 11 (4) ◽  
pp. 1823-1831
Author(s):  
Sotirios Nik. Longinos ◽  
Mahmut Parlaktuna

AbstractHydrate formation characteristics and hydrodynamic behavior have been investigated for mixture of methane–propane hydrate formation with pure water and with the amino acid of lysine 1.5 wt% at 24.5 bars and 2 °C. There were total 12 experiments with full and no baffle estimating the induction time, rate of hydrate formation, hydrate productivity and power consumption. The outcomes showed that radial flow experiments with radial flow have better behavior compared to mixed flow ones due to better interaction between gas and liquid. Furthermore, lysine experiments formed hydrates more quickly compared to pure water experiments showing that lysine functions as promoter and not as inhibitor. RT experiments consume more energy compared to PBT ones, while induction time is always smaller in RT experiments compared to PBT ones.


2009 ◽  
Vol 63 (2) ◽  
Author(s):  
Joanna Karcz ◽  
Beata Mackiewicz

AbstractThe effects of baffling of an agitated vessel on the production of floating particles suspension are presented in this paper. Critical agitator speed, needed for particles dispersion in a liquid agitated in a vessel of the inner diameter of 0.295 m, was determined. The just drawdown agitator speeds were defined analogously to the Zwietering criterion. Specific agitation energy was calculated from the power consumption experimental data obtained by means of the strain gauge method. The experiments were carried out for twelve configurations of the baffles differing in number, length and their arrangement in the vessels. The following high-speed impellers were used: up- and downpumping six blade pitched blade turbines, Rushton turbine, and propeller. The impeller was located in the vessel in the height equal to two-thirds or one-third of the vessel diameter from the bottom of the vessel. The results were described in the form of a dimensionless equation.


2011 ◽  
Vol 37 (2) ◽  
pp. 147-149 ◽  
Author(s):  
Yoshihito Kato ◽  
Noboru Kamei ◽  
Yutaka Tada ◽  
Azusa Nakaoka ◽  
Yuichiro Nagatsu ◽  
...  

2010 ◽  
Vol 44 (2) ◽  
pp. 201-205 ◽  
Author(s):  
M. Sarshar ◽  
F. Esmaeilzadeh ◽  
J. Fathikalajahi

2021 ◽  
Vol 166 ◽  
pp. 109-120
Author(s):  
Ning Qiu ◽  
Peng Wang ◽  
Qiaorui Si ◽  
Willy E.K. Pettang ◽  
Shouqi Yuan

2016 ◽  
Vol 95 (1) ◽  
pp. 187-198 ◽  
Author(s):  
Sélim Douïeb ◽  
Simon Archambault ◽  
Louis Fradette ◽  
François Bertrand ◽  
Benoît Haut

Author(s):  
Ryo Nozawa ◽  
Mohammad Ferdows ◽  
Kazuhiko Murakami ◽  
Masahiro Ota

In this paper, we suggest the advanced method of methane hydrate formation by cyclodextrin solutions. The structures of the methane hydrate were experimentally investigated by Raman spectroscopy. The induction time of the methane hydrate formation becomes by shorter 10–30 times and formation rate become by faster 2–4 times originated in the increased methane concentration of hydrate formation water by adding cyclodextrins. The results by the Raman spectroscopy indicate that the structure I methane hydrate is produced and methane molecules exist in both Large and Small cages.


Sign in / Sign up

Export Citation Format

Share Document