scholarly journals Characterization of Severely Biodegraded Crude Oils Using Negative-Ion ESI Orbitrap MS, GC-NCD and GC-SCD: Insights into Heteroatomic Compounds Biodegradation

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 300
Author(s):  
Xiong Cheng ◽  
Dujie Hou

A slightly and two severely biodegraded crude oils with the same origin were analysed using negative-ion electrospray ionization Orbitrap mass spectrometry (ESI Orbitrap MS), gas chromatography-nitrogen chemiluminescence detector (GC-NCD), and GC-sulfur chemiluminescence detector (GC-SCD) to investigate the composition of heteroatomic compounds and their fate during severe biodegradation and to provide insights into biodegradation pathway of hopanes, nitrogen- and sulfur-containing compounds. Twelve heteroatomic compound classes, including O1–O5, N1, N2, N1O1–N1O3, N1S1 and O3S1, were detected and assigned unambiguous molecular formulae. The O1 species are likely phenols with additional naphthenic and/or aromatic rings. Carboxylic acids (O2 species) are originated from oxidation of hydrocarbons, and the tricyclic naphthenic acids are the most resistant, followed by bicyclics. Hopanes could be biodegraded by demethylation or by unstable hopanoic acids as intermediates to yield 25-norhopanes. The N1 species are pyrrolic compounds with naphthenic and/or aromatic rings and are dominated by carbazole analogues. Carbazoles with more aromatic rings are more resistant to biodegradation. The N1 species could be converted to N1O1 and N1O2 compounds via ring-opening and hydroxylation pathways. The N1S1 species contain a pyrrolic and cyclic sulfide structure, which are highly recalcitrant to biodegradation. Benzothiophenes and dibenzothiophenes might be biodegraded via the complete pathway or the sulfur-specific pathway rather than by other pathways to yield acidic oxygenated sulfur compounds.

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 898
Author(s):  
Xin Wang ◽  
Xiang-Jian Zhong ◽  
Na Zhou ◽  
Ning Cai ◽  
Jia-Hui Xu ◽  
...  

Gymnadenia conopsea R. Br. is a traditional Tibetan medicinal plant that grows at altitudes above 3000 m, which is used to treat neurasthenia, asthma, coughs, and chronic hepatitis. However, a comprehensive configuration of the chemical profile of this plant has not been reported because of the complexity of its chemical constituents. In this study, a rapid and precise method based on ultra-high performance liquid chromatography (UPLC) combined with an Orbitrap mass spectrometer (UPLC–Orbitrap–MS/MS) was established in both positive- and negative-ion modes to rapidly identify various chemical components in the tubers of G. conopsea for the first time. Finally, a total of 91 compounds, including 17 succinic acid ester glycosides, 9 stilbenes, 6 phenanthrenes, 19 alkaloids, 11 terpenoids and steroids, 20 phenolic acid derivatives, and 9 others, were identified in the tubers of G. conopsea based on the accurate mass within 3 ppm error. Furthermore, many alkaloids, phenolic acid derivates, and terpenes were reported from G. conopsea for the first time. This rapid method provides an important scientific basis for further study on the cultivation, clinical application, and functional food of G. conopsea.


1992 ◽  
Vol 18 (6) ◽  
pp. 851-860 ◽  
Author(s):  
Luzia Koike ◽  
Lucia M.C. Rebouças ◽  
Francisco de A.M. Reis ◽  
Anita J. Marsaioli ◽  
Hans H. Richnow ◽  
...  

2020 ◽  
Vol 17 (6) ◽  
pp. 1764-1778
Author(s):  
Xiao-Bo Chen ◽  
Xin-Yang Zhang ◽  
Ru-Meng Qin ◽  
Sheng-Jie Shan ◽  
Pan-Deng Xia ◽  
...  

AbstractThe positive- and negative-ion electrospray ionization (ESI) coupled with Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) was employed to identify the chemical composition of heteroatomic compounds in four distillates of Fushun shale oil, and their catalytic cracking performance was investigated. There are nine classes of basic nitrogen compounds (BNCs) and eleven classes of non-basic heteroatomic compounds (NBHCs) in the different distillates. The dominant BNCs are mainly basic N1 class species. The dominant NBHCs are mainly acidic O2 and O1 class species in the 300–350 °C, 350–400 °C, and 400–450 °C distillates, while the neutral N1, N1O1 and N2 compounds become relatively abundant in the > 450 °C fraction. The basic N1 compounds and acidic O1 and O2 compounds are separated into different distillates by the degree of alkylation (different carbon number) but not by aromaticity (different double-bond equivalent values). The basic N1O1 and N2 class species and neutral N1 and N2 class species are separated into different distillates by the degrees of both alkylation and aromaticity. After the catalytic cracking of Fushun shale oil, the classes of BNCs in the liquid products remain unchanged, while the classes and relative abundances of NBHCs vary significantly.


Sign in / Sign up

Export Citation Format

Share Document