scholarly journals 100% Renewable Energy Scenarios for North America—Spatial Distribution and Network Constraints

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 658
Author(s):  
Elmar Zozmann ◽  
Leonard Göke ◽  
Mario Kendziorski ◽  
Citlali Rodriguez del Angel ◽  
Christian von Hirschhausen ◽  
...  

The urgency to combat climate change and the widely distributed, increasingly competitive renewable resources in North America are strong arguments to explore scenarios for a renewable energy supply in the region. While the current power system of North America is heavily dependent on fossil fuels, namely natural gas, coal and oil, and some nuclear power plants, some current policies at the state level, and future federal policies are likely to push the share of different renewable sources available in Mexico, the U.S., and Canada. This paper explores three scenarios for a renewable energy supply, using a bottom-up energy system model with a high level of spatial and time granularity. The scenarios span the extremes with respect to connecting infrastructure: while one scenario only looks at state-level supply and demand, without interconnections, the other extreme scenario allows cross-continental network investments. The model results indicate that the North American continent (a) has sufficient renewable potential to satisfy its energy demand with renewables, independent of the underlying grid assumption, (b) solar generation dominates the generation mix as the least-cost option under given renewable resource availability and (c) simultaneous planning of generation and transmission capacity expansion does not result in high grid investments, but the necessary flexibility to integrate intermittent renewable generation is rather provided by the existing grid in combination with short-term and seasonal storages.


Author(s):  
Jan Fabian Feldhoff ◽  
Carina Hofmann ◽  
Stefan Hübner ◽  
Jan Oliver Kammesheidt ◽  
Martin Kilbane ◽  
...  

It is broadly accepted that current energy systems should become more sustainable in both a global and local context. However, setting common goals and shared objectives and determining the appropriate means by which to get there is the subject of heavy debate. Therefore, the American Society of Mechanical Engineers (ASME) and the German Association of Engineers (VDI) initiated a joint project aimed at providing a young engineers’ perspective to the global energy conversation. The young engineer project teams set a common goal of assembling a completely sustainable energy system for the U.S. and Germany by 2050. This includes not only the electricity market, but the overall energy system. Based on the current global energy paradigm, a completely sustainable energy system seems very ambitious. However, multiple analyses show that this path is possible and would in the medium to long run not only be desirable, but also competitive in the market. This future ‘energy puzzle’ consists of many important pieces, and the overall picture must be shaped by an overarching strategy of sustainability. Besides the many detailed pieces, four main critical issues must be addressed by engineers, politicians and everybody else alike. These challenges are: i) Rational use of energy: This uncomfortable topic is rather unappealing to communicate, but is a key issue to reduce energy demand and to meet the potentials of renewable energy carriers. ii) Balancing of electricity demand and generation: This is a challenge to the electricity markets and infrastructures that are currently designed for base-load, mainly fossil power plants. The overall mix of renewable energy generation, storage technologies, grid infrastructure, and power electronics will decide how efficient and reliable a future energy system will be. iii) Cost efficiency and competitiveness: It is a prerequisite for industrialized countries to stay competitive and to establish RE in the market. Developing economic technologies while at the same time establishing a strong RE market is the secret of success. iv) Acceptance of the system and its consequences: The best energy strategy cannot be realized without broad public acceptance for it. Therefore, the understanding of the energy technologies and an objective discussion must be promoted — without old fashioned emotionalizing of certain risks. The paper will present details on the four mentioned aspects, compare the situations between the U.S. and Germany, and propose solutions for appropriate political frame conditions to achieve a sustainable energy system.



2007 ◽  
pp. 104-122 ◽  
Author(s):  
I. Bashmakov

The paper presents a vision of Russian energy future before 2020. The scenario approach is required to identify potential energy supply and demand future trajectories for Russia facing uncertainties of both global energy system evolution and domestic demographic and economic development in 2007-2020. It allows for assessing energy demand by sectors under different investment, technological and energy pricing policies favoring the least cost balancing of energy supply options and energy efficiency improvements to sustain dynamic economic growth. The given approach provides grounds for evaluation of different energy policies effectiveness. Three scenarios - "Inertia Strategy", "Energy Centrism", and "Efficiency Strategy - Four I" - integral-innovative-intellectual-individual oriented energy systems - are considered in the paper. It shows that ignorance of the last scenario escalates either energy shortages in the country or Russian economy overloading with energy supply investments both preventing from sustaining rates of economic growth which have recently been demonstrated by Russia.



Author(s):  
Chariya Senpong ◽  
Dawan Wiwattanadate

Potential of renewable energy resources for electricity generation as well as energy supply and demand in Nakhon Si Thammarat province were studied with an objective to develop a sustainable provincial power development plan, and/or to search for renewable energy capacity to replace 2 x 800 MW coalfired power plants have been planned to be installed in the province under PDP2010. The study shows significant potential of renewable energy in the province; especially wind energy, solid waste and biomass. Total capacity of the renewable energy for electricity generation reported in other studies was as high as 3,181.84 MW; however, the installed renewable energy power plants in the province as of 2011 just stand at 42 MW due to various limitations.   Meanwhile, the provincial electricity demand forecast is continued increasing up to 647 MW by the end of 2030. More Renewable energy has been to fulfill energy demand in the province, integration of renewable energy policy, database, and technology innovation are keys success factors for sustainable provincial energy planning. A renewable information center working together with government, business, and the public would be needed to initiate developing the plan with a public organization proposing the provincial committee under public participation and acceptance.   Keywords: Provincial Power Development Plan, renewable energy, coalfired power plant, sustainable energy development, self-reliance energy management, provincial electricity generating.



2021 ◽  
Vol 11 (4) ◽  
pp. 1819
Author(s):  
Roman Geyer ◽  
Sophie Knöttner ◽  
Christian Diendorfer ◽  
Gerwin Drexler-Schmid ◽  
Verena Alton

The need for decarbonization raises several questions. How can renewable energy supply for the industrial sector be realized in the long term? Furthermore, how must the existing energy system be transformed to achieve the ambitious climate targets in place? In Austria, the share of renewable energy supplying industrial energy demand currently accounts for only 45% of final energy consumption. This clearly shows that a conversion of industrial energy systems is necessary. Different ambitious perspectives for a renewable energy supply for the Austrian industrial sector are calculated for three defined scenarios (base, efficiency, transition) in this paper. In addition, corresponding requirements for the energy infrastructures are discussed. The scenario results show a range of industrial final energy consumption from 78 TWh (efficiency) to 105 TWh (transition) through decarbonizing the industrial energy supply (cf. 87 TWh in 2019). Decarbonization requires an increasing shift towards electrical energy, especially in the transition scenario, whereas in the base and efficiency scenarios, biogenic fuels play an important role. Comprehensive decarbonization and the associated substitution of energy carriers in industry pose significant challenges for the existing energy infrastructure, its expansion, and optimization.



2020 ◽  
Vol 13 (4) ◽  
pp. 235
Author(s):  
Konara Mudiyanselage Gayani Kaushalya Konara ◽  
Akihiro Tokai

Fast growing economy of Sri Lanka with an annual GDP growth rate of 5% has significantly increased demand for energy. As energy supply must grow in a sustainable way to meet the demand, concern over the environmental impact of energy flows have been gaining attention during policy development and implementation. Therefore, there is a need of comprehensively evaluating energy metabolic system in Sri Lanka to identify resource dependencies of the country that must be addressed to increase the sustainability. A conceptual energy metabolic model was developed identifying economic, social and demographic variables affecting energy demand, transformation and supply and GHG emissions in Sri Lanka. Developed model was used to evaluate the current energy flows and forecast the behaviour of energy metabolism while assessing the sustainability of the energy system using number of sustainability indicators. Developed model indicates an average annual growth rate of 4.06% in energy demand, 4.17% in non-renewable energy supply and 3.36% in GHG emissions. Transport sector has the highest GHG emissions percentage of 73%. Sustainability evaluation of the energy metabolic system shows that Sri Lanka is becoming more efficient and less energy intensive over the years. However, increase in GHG emissions per capita and emission intensity has a negative impact on the environmental sustainability while increase renewable energy share in total energy supply can be considered positive. The findings of the research give new insights to the energy system of Sri Lanka which enable energy planners to implement policies to transition towards a more secure and sustainable energy system.



2020 ◽  
Vol 10 (17) ◽  
pp. 5862 ◽  
Author(s):  
Mohammad Dehghani ◽  
Mohammad Mardaneh ◽  
Om Parkash Malik ◽  
Josep M. Guerrero ◽  
Ruben Morales-Menendez ◽  
...  

In today’s world, the development and continuation of life require energy. Supplying this energy demand requires careful and scientific planning of the energy provided by a variety of products, such as oil, gas, coal, electricity, etc. A new study on the operation of energy carriers called Energy Commitment (EC) is proposed. The purpose of the EC is to set a pattern for the use of energy carriers to supply energy demand, considering technical and economic constraints. EC is a constrained optimization problem that can be solved by using optimization methods. This study suggests the Following Optimization Algorithm (FOA) to solve the EC problem to achieve technical and economic benefits. Minimizing energy supply costs for the total study period is considered as an objective function. The FOA simulates social relationships among the community members who try to improve their community by following each other. Simulation is carried out on a 10-unit energy system supplied by various types of energy carriers that includes transportation, agriculture, industrial, residential, commercial, and public sectors. The results show that the optimal energy supply for a grid with 0.15447 Millions of Barrels of Oil Equivalent (MBOE) of energy demand costs 9.0922 millions dollar for a 24-h study period. However, if the energy supply is not optimal, the costs of operating energy carriers will increase and move away from the optimal economic situation. The economic distribution of electrical demand between 10 power plants and the amount of production units per hour of the study period is determined. The EC outputs are presented, which include an appropriate pattern of energy carrier utilization, energy demand supply costs, appropriate combination of units, and power plant production. The behavior and process of achieving the answer in the convergence curve for the implementation of FOA on EC indicates the exploration and exploitation capacity of FOA. Based on the simulated results, EC provides more information than Unit Commitment (UC) and analyzes the network more efficiently and deeply.



Author(s):  
Ken Oshiro ◽  
Shinichiro Fujimori

Abstract Japan’s mid-century strategy to reduce greenhouse gas (GHG) emissions by 80% by 2050 requires rapid energy system changes, which may lead to stranded assets in fossil fuel-related infrastructure. Existing studies have shown that massive stranding of assets in the energy supply side is possible; few studies have involved economy-wide stranded asset analysis. In this study, we estimated stranded investments in both the energy supply and demand sectors in Japan in the context of near-term goals for 2030 and the mid-century strategy. To this end, multiple emission scenarios for Japan were assessed based on various emission reduction targets for 2030 and 2050. The results show that stranded investments in the energy supply sectors occur mainly in coal power plants without carbon capture and storage (CCS), especially in scenarios without enhanced near-term mitigation targets. Increases of stranded investment in demand sectors were observed primarily under stringent mitigation scenarios, which exceed the 80% reduction target. In particular, investment for oil and gas heating systems in the buildings sector may be stranded at levels up to $20 billion US between 2021 and 2050. We further simulated a scenario incorporating a subsidy for devices that do not use fossil fuels as a sector-specific policy; this reduced the amount of stranded investment in the buildings sector. We confirmed the benefit of enhancing near-term mitigation targets to avoid generating stranded investments. These findings support the importance of inclusive energy and climate policy design involving not only pricing of carbon emissions but also complementary cross-sector economy-wide policies.



2020 ◽  
Vol 39 (5) ◽  
pp. 6339-6350
Author(s):  
Esra Çakır ◽  
Ziya Ulukan

Due to the increase in energy demand, many countries suffer from energy poverty because of insufficient and expensive energy supply. Plans to use alternative power like nuclear power for electricity generation are being revived among developing countries. Decisions for installation of power plants need to be based on careful assessment of future energy supply and demand, economic and financial implications and requirements for technology transfer. Since the problem involves many vague parameters, a fuzzy model should be an appropriate approach for dealing with this problem. This study develops a Fuzzy Multi-Objective Linear Programming (FMOLP) model for solving the nuclear power plant installation problem in fuzzy environment. FMOLP approach is recommended for cases where the objective functions are imprecise and can only be stated within a certain threshold level. The proposed model attempts to minimize total duration time, total cost and maximize the total crash time of the installation project. By using FMOLP, the weighted additive technique can also be applied in order to transform the model into Fuzzy Multiple Weighted-Objective Linear Programming (FMWOLP) to control the objective values such that all decision makers target on each criterion can be met. The optimum solution with the achievement level for both of the models (FMOLP and FMWOLP) are compared with each other. FMWOLP results in better performance as the overall degree of satisfaction depends on the weight given to the objective functions. A numerical example demonstrates the feasibility of applying the proposed models to nuclear power plant installation problem.



2020 ◽  
Vol 10 (12) ◽  
pp. 4061 ◽  
Author(s):  
Naoto Takatsu ◽  
Hooman Farzaneh

After the Great East Japan Earthquake, energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim, this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES), in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture, Japan. The techno-economic assessment of deploying the proposed systems was conducted, using an integrated simulation-optimization modeling framework, considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid, considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results, the proposed HRES can generate about 47.3 MWh of electricity in all scenarios, which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh, respectively.



Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2045
Author(s):  
Pierpaolo Garavaso ◽  
Fabio Bignucolo ◽  
Jacopo Vivian ◽  
Giulia Alessio ◽  
Michele De Carli

Energy communities (ECs) are becoming increasingly common entities in power distribution networks. To promote local consumption of renewable energy sources, governments are supporting members of ECs with strong incentives on shared electricity. This policy encourages investments in the residential sector for building retrofit interventions and technical equipment renovations. In this paper, a general EC is modeled as an energy hub, which is deemed as a multi-energy system where different energy carriers are converted or stored to meet the building energy needs. Following the standardized matrix modeling approach, this paper introduces a novel methodology that aims at jointly identifying both optimal investments (planning) and optimal management strategies (operation) to supply the EC’s energy demand in the most convenient way under the current economic framework and policies. Optimal planning and operating results of five refurbishment cases for a real multi-family building are found and discussed, both in terms of overall cost and environmental impact. Simulation results verify that investing in building thermal efficiency leads to progressive electrification of end uses. It is demonstrated that the combination of improvements on building envelope thermal performances, photovoltaic (PV) generation, and heat pump results to be the most convenient refurbishment investment, allowing a 28% overall cost reduction compared to the benchmark scenario. Furthermore, incentives on shared electricity prove to stimulate higher renewable energy source (RES) penetration, reaching a significant reduction of emissions due to decreased net energy import.



Sign in / Sign up

Export Citation Format

Share Document