scholarly journals Numerical Investigation of the Geometrical Effect on Flow-Induced Vibration Performance of Pivoted Bodies

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1128
Author(s):  
Hamid Arionfard ◽  
Sina Mohammadi

In this study, the Flow-Induced Vibration (FIV) of pivoted cylinders (at a distance) is numerically investigated as a potential source of energy harvesting. In particular, we investigate the effect of pivot point placement, arm length, and natural frequency on the FIV performance of six different cross sections in the Reynolds number of around 1000. All sections have similar mass, area, and moment of inertia to eliminate non-geometrical effects on the performance. Classical studies show that the synchronization phenomenon (lock-in) occurs when the vortex formation frequency is close enough to the body’s natural frequency. Due to the configuration of the cylinder in this research (pivoted eccentrically), the natural frequency is also a function of the flow velocity as well as the geometrical specifications of the system. The simulation is done for the arm lengths between −3D and +3D for all cross sections. Results show that maximum output power is principally influenced more by the pivot location than the arm length. Although the box cross section has a higher amplitude of vibration, the circular cross section has the highest efficiency followed by the egg shape.

Author(s):  
Georges Griso ◽  
Larysa Khilkova ◽  
Julia Orlik ◽  
Olena Sivak

AbstractIn this paper, we study the asymptotic behavior of an $\varepsilon $ ε -periodic 3D stable structure made of beams of circular cross-section of radius $r$ r when the periodicity parameter $\varepsilon $ ε and the ratio ${r/\varepsilon }$ r / ε simultaneously tend to 0. The analysis is performed within the frame of linear elasticity theory and it is based on the known decomposition of the beam displacements into a beam centerline displacement, a small rotation of the cross-sections and a warping (the deformation of the cross-sections). This decomposition allows to obtain Korn type inequalities. We introduce two unfolding operators, one for the homogenization of the set of beam centerlines and another for the dimension reduction of the beams. The limit homogenized problem is still a linear elastic, second order PDE.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yousef Alihosseini ◽  
Mohammad Reza Azaddel ◽  
Sahel Moslemi ◽  
Mehdi Mohammadi ◽  
Ali Pormohammad ◽  
...  

AbstractIn recent years, PCR-based methods as a rapid and high accurate technique in the industry and medical fields have been expanded rapidly. Where we are faced with the COVID-19 pandemic, the necessity of a rapid diagnosis has felt more than ever. In the current interdisciplinary study, we have proposed, developed, and characterized a state-of-the-art liquid cooling design to accelerate the PCR procedure. A numerical simulation approach is utilized to evaluate 15 different cross-sections of the microchannel heat sink and select the best shape to achieve this goal. Also, crucial heat sink parameters are characterized, e.g., heat transfer coefficient, pressure drop, performance evaluation criteria, and fluid flow. The achieved result showed that the circular cross-section is the most efficient shape for the microchannel heat sink, which has a maximum heat transfer enhancement of 25% compared to the square shape at the Reynolds number of 1150. In the next phase of the study, the circular cross-section microchannel is located below the PCR device to evaluate the cooling rate of the PCR. Also, the results demonstrate that it takes 16.5 s to cool saliva samples in the PCR well, which saves up to 157.5 s for the whole amplification procedure compared to the conventional air fans. Another advantage of using the microchannel heat sink is that it takes up a little space compared to other common cooling methods.


2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.


2021 ◽  
Vol 11 (5) ◽  
pp. 159-170
Author(s):  
Zsolt Hegyes ◽  
Máté Petrik ◽  
L. Gábor Szepesi

During the operation of the hydrocyclone the cut size diameter is the most important data. This is connected to feed rate, which is closely related to the feed cross section. Preliminary research has revealed that square cross-section is more effective than circular cross-section. The research compared 2 types of feed cross sections at 5 different feed rates. One is a standard rectangular cross-section and the other is a square cross-section that narrows with a baffle plate. Preliminary calculations for cut size diameter have shown that better particle separation at all speeds can be achieved with the baffle plate solution. In both types, the increased velocity created decreased cut size diameter. During the simulation, the baffle plate did not cause any abnormalities in the internal pressure and velocity distributions. The simulation revealed that the particles did not behave as previously calculated.


2019 ◽  
Vol 869 ◽  
pp. 610-633 ◽  
Author(s):  
L. Chiapponi ◽  
M. Ungarish ◽  
D. Petrolo ◽  
V. Di Federico ◽  
S. Longo

We present a combined theoretical and experimental study of lock-release inertial gravity currents (GCs) propagating in a horizontal channel of circular cross-section with open-top surface in the non-Boussinesq regime. A two-layer shallow-water (SW) model is developed for a generic shape of the cross-section with open top, and then implemented in a finite difference numerical code for the solution in a circular-cross-section channel of the type used in the experiments. The model predicts propagation with (almost) constant speed for a fairly long distance, accompanied by a depression of the ambient free open-top surface behind the front of the current. Sixteen experiments were conducted with a density ratio $r=0.587{-}0.939$ in full-depth and part-depth release conditions, measuring the front speed and the free-surface time series at four cross-sections. The channel was a circular tube 409 cm long, with a radius of 9.5 cm; the lengths of the locks were 52 and 103.5 cm. Density contrast was obtained by adding sodium chloride and dipotassium phosphate to fresh water. The theoretical values of the front speed and of the depression overestimate the experimental values, but they predict correctly their trend for varying parameters and provide reliable insights into the underlying mechanisms. In particular, we demonstrate that the circular cross-section increases the speed of propagation as compared to the standard rectangular cross-section case (for the same initial height and density ratio). The discrepancies between the SW predictions and the present experiments are of the same order of magnitude as those of previously published results for simpler systems (Boussinesq, rectangular). In addition to the depression, which is a wave bound to, and following the front of, the GC, the system also displays two kinds of free-surface waves, namely the initial bump (its amplitude is of the same order as the depression) and some short-length and low-amplitude waves in the tail of the bump. These free waves propagate with a celerity well predicted by the ‘fast’ eigenvalues of the mathematical model. Comparison is provided with the celerity of a solitary wave. It is expected that discrepancies between theory and experiments can be partly attributed to the presence of these waves. The reported insights and SW prediction method can be applied to a variety of cross-sections of practical interest (triangles, trapezoids, etc.).


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Bo Jiang ◽  
Vikas Thondapu ◽  
Eric K. W. Poon ◽  
Peter Barlis ◽  
Andrew S. H. Ooi

Incomplete stent apposition (ISA) is one of the causes leading to poststent complications, which can be found when an undersized or an underexpanded stent is deployed at lesions. The previous research efforts have focused on ISA in idealized coronary arterial geometry with circular cross section. However, arterial cross section eccentricity plays an important role in both location and severity of ISA. Computational fluid dynamics (CFD) simulations are carried out to systematically study the effects of ISA in arteries with elliptical cross section, as such stents are partially embedded on the minor axis sides of the ellipse and malapposed elsewhere. Overall, ISA leads to high time-averaged wall shear stress (TAWSS) at the proximal end of the stent and low TAWSS at the ISA transition region and the distal end. Shear rate depends on both malapposition distance and blood stream locations, which is found to be significantly higher at the inner stent surface than the outer surface. The proximal high shear rate signifies increasing possibility in platelet activation, when coupled with low TAWSS at the transition and distal regions which may indicate a nidus for in-stent thrombosis.


2020 ◽  
Vol 307 ◽  
pp. 01047
Author(s):  
Gohar Shoukat ◽  
Farhan Ellahi ◽  
Muhammad Sajid ◽  
Emad Uddin

The large energy consumption of membrane desalination process has encouraged researchers to explore different spacer designs using Computational Fluid Dynamics (CFD) for maximizing permeate per unit of energy consumed. In previous studies of zigzag spacer designs, the filaments are modeled as circular cross sections in a two-dimensional geometry under the assumption that the flow is oriented normal to the filaments. In this work, we consider the 45° orientation of the flow towards the three-dimensional zigzag spacer unit, which projects the circular cross section of the filament as elliptical in a simplified two-dimensional domain. OpenFOAM was used to simulate the mass transfer enhancement in a reverse-osmosis desalination unit employing spiral wound membranes lined with zigzag spacer filaments. Properties that impact the concentration polarization and hence permeate flux were analyzed in the domain with elliptical filaments as well as a domain with circular filaments to draw suitable comparisons. The range of variation in characteristic parameters across the domain between the two different configurations is determined. It was concluded that ignoring the elliptical projection of circular filaments to the flow direction, can introduce significant margin of error in the estimation of mass transfer coefficient.


2010 ◽  
Vol 137 ◽  
pp. 161-190
Author(s):  
Mitja Schimek ◽  
Dirk Herzog ◽  
Dietmar Kracht ◽  
Heinz Haferkamp

Nowadays, high requirements are being placed on producing lighter automobiles with a higher strength. To achieve graded strength properties and to improve the rigidity of high strength thin steel sheets, the side effects of laser joining processes can be used. Local physical and geometrical effects which have previously only been observed as side effects can be purposefully used to increase the rigidity and strength of sheet metal structures. By using a focused laser beam with a diameter of several tenths of a millimetre, bead-on-plate and overlap welding seams have been produced. The energy needed to produce this kind of welding seam can be limited to a small area of the workpiece. In comparison to other procedures, the basic material characteristics are retained after welding, the main reason for this being localized heat input. The continual development of laser beam sources to provide higher output powers has extended their spectrum of use in the field of joining technologies. One aim of the research is to produce local physical and geometrical effects with two different laser systems, on the one hand, with an Nd:YAG laser with a maximum output power of 4 kW, and on the other hand with a Yb:YAG laser with an maximum output power of 3 kW. Bead-on-plate and overlap welding seams were produced to demonstrate that rigidity and strength can be increased in metal sheets. The investigations were carried out on two high strength steels H340LA with two different zinc coatings (D and ZE) and TRIP700. The sheets were tested using tensile tests, 3-point bending tests and fatigue strength tests. During the tests, metallographic analyses were carried out. Seven different specimens were investigated, one without bead-on-plate welding seams, and six with different welding geometries, expect the material H340LAZE which was investigated with three various welding geometries. To analyse the complex stress status, investigations of the residual stress and the fracture were done. Calculations of the seam volume were done to be able to calculate the tensile strength for linear bead-on-plate welding seams and the maximum force for bending overlap welding seams. The tensile and bending tests showed that higher forces were needed before failure occurred, e.g. bending the specimens. Furthermore, the investigations showed that the strength of the specimens with welding seams increased, in comparison to the specimens without welding seams. Another result of the experiments is that there is a dependency between the fatigue strength and the position of the seam relative to the direction of the testing force.


2009 ◽  
Vol 15 (1) ◽  
pp. 21-33 ◽  
Author(s):  
Artiomas Kuranovas ◽  
Douglas Goode ◽  
Audronis Kazimieras Kvedaras ◽  
Shantong Zhong

This paper represents the analysis of 1303 specimens of CFST experimental data. Test results are compared with EC4 provided method for determining the load‐bearing capacity of these composite elements. Several types of CFSTs were tested: both circular and rectangular cross‐sections with solid and hollow concrete core with axial load applied without and with moment, with sustained load and preloading. For circular cross‐section columns there is a good agreement between the test failure load and the EC4 calculation for both short and long columns with and without moment. For rectangular cross‐section columns the agreement is good except when the concrete cylinder strength was greater than 75 MPa, when many tests failed below the strength predicted by EC4. Preloading the steel tube before filling with concrete seems to have no effect on the strength. This paper also presents the stress distribution, confinement distribution and complete average longitudinal stress‐strain curves for concrete‐filled steel tubular elements. Based on the definition of the “Unified Theory”, the CFST is looked upon as an entity of a new composite material. In this paper, the research achievement of the strength and stability for centrifugal‐hollow and solid concrete filled steel tube are introduced. These behaviours relate to the hollowness ratio and the confining indexes of corresponding solid CFST. If the hollow ratio equals to 0,4–0,5 and over, the N‐ϵ relationship exists in steady descending stage. The critical stress of CFST elements stability is determined as an eccentric member with the initial eccentricity by use of finite element method. Santrauka Straipsnyje analizuojami 1303 betonšerdžių plieninių strypų bandinių eksperimentiniai duomenys. Duomenys lyginami su eurokode 4 pateiktais kompozitinių elementų laikomosios galios nustatymo metodais. Analizuojami šie betonšerdžių plieninių strypų bandinių tipai: pilnaviduriai ir tuščiaviduriai, apskrito ir stačiakampio skerspjūvio kolonos, kurių galuose veikia arba neveikia momentas, su iš anksto pridėta arba ilgalaike apkrova. Apskrito skerspjūvio kolonų laikomosios galios bandymų rezultatai atitinka skaičiavimų reikšmes, apskaičiuotas pagal eurokode 4 pateiktu metodu. Stačiakampio skerspjūvio elementų laikomosios galios reikšmių bandymo rezultatai puikiai atitinka teorines reikšmes, kai betono ritininis stipris nesiekia 75 MPa. Išankstinis elementų apkrovimas poveikio elementų laikomajai galiai beveik neturi. Taip pat nagrinėjami betonšerdžių elementų įtempių būvių pasiskirstymas, betono apspaudimo poveikis ir išilginių deformacijų ir įtempių kreivės. Pateikiama S. T. Zhong „Unifikuota teorija“, kuri nagrinėja kompozitinį elementą kaip visumą. Straipsnyje nagrinėjamos kompozitinio plieninio ir betoninio elemento stiprumo ir pastovumo sąlygos. Tokių elementų reikšmėmis. Jeigu tuštumos santykis lygus 0,4–0,5 ir daugiau, N-ε sąryšis yra kritimo stadijoje. Elgsenos stadijos keičiasi pagal tuštumos koeficientą.


The object of the paper is to investigate the properties of shafts of circular cross-section into which keyways or slits have been cut, first when subjected to torsion, and second when bent by a transverse load at one end. The torsion problem for similar cases has been treated by several writers. Filon has worked out an approximation to the case of a circular section with one or two keyways ; in his method the boundary of the cross-section was a nearly circular ellipse and the boundaries of the keyways were confocal hyperbolas. In particular he considered the case when the hyperbola degenerated into straight lines starting from the foci. The solution for a circular section with one keyway in the form of an orthogonal circle has been obtained by Gronwall. In each case the solution has been obtained by the use of a conformal trans­formation and this method is again used in this paper, the transformations used being ρ = k sn 2 t . ρ = k 1/2 sn t , ρ = k 1/2 sn 1/2 t where ρ = x + iy , t = ξ + i η. No work appears to have been done on the flexure problem which is here worked out for several cases of shafts with slits. 2. Summary of the Problems Treated . We first consider the torsional properties of shafts with one and with two indentations. In particular cases numerical results have been obtained for the stresses at particular points and for the torsional rigidity. The results for one indentation and for two indentations of the same width and approximately the same depth have been compared. We next consider the solution of the torsion problem for one, two or four equal slits of any depth from the surface towards the axis. The values of the stresses have not been worked out in these cases since the stress is infinite at the bottom of the slits. This in stress occurs because the physical conditions are not satisfied at the bottom of the slits, but as had been pointed out by Filon this does not affect the validity of the values of the torsional rigidity. We compare the effect on the torsional rigidity of the shaft of one, two and four slits of the same depth in particular cases. We also compare the results for one slit with those obtained by Filon by another method, and find very good agreement which is illustrated by a graph. The reduction in torsional rigidity due to a semicircular keyway is compared with that due to a slit of approximately the same depth. Finally the distortion of the cross-sections at right angles to the planes is investigated, and in this, several interesting and perhaps unexpected features appear. The relative shift of the two sides of the slits is calculated in several cases.


Sign in / Sign up

Export Citation Format

Share Document