scholarly journals Adaptive Global Sliding Mode Controller Design for Perturbed DC-DC Buck Converters

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1249
Author(s):  
Saleh Mobayen ◽  
Farhad Bayat ◽  
Chun-Chi Lai ◽  
Asghar Taheri ◽  
Afef Fekih

This paper proposes a novel adaptive intelligent global sliding mode control for the tracking control of a DC-DC buck converter with time-varying uncertainties/disturbances. The proposed control law is formulated using a switching surface that eliminates the reaching phase and ensures the existence of the sliding action from the start. The control law is derived based on the Lyapunov stability theory. The effectiveness of the proposed approach is illustrated via high-fidelity simulations by means of Simscape simulation environment in MATLAB. Satisfactory tracking accuracy, efficient suppression of the chattering phenomenon in the control input, and high robustness against uncertainties/disturbances are among the attributes of the proposed control approach.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yanmin Wang ◽  
Yang Ge ◽  
Ping Zhang ◽  
Guangxin Duan

This paper proposes a novel discrete-time sliding mode (DTSM) control approach to address the robust stability problem of buck converters with multiple disturbances. The contributions lie in the “unified” modelling and controller design. In modelling, all the possible model uncertainties and external disturbances are considered and further classified into two cases. It can also be extended to the situations with individual/several disturbances. While for the controller design, differing from the traditional DTSM based on the nominal model, the disturbances are directly introduced in the process, giving the robust stability condition and four new regulation subranges. It is suitable for both nominal and perturbed systems. Finally, the influences of the sampling time and disturbances on the control performance are investigated. Simulations and experiments confirm the benefits of the unified approach with greater accuracy and wider applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Nan Liu ◽  
Rui Ling ◽  
Qin Huang ◽  
Zheren Zhu

Consensus tracking problem of the leader-follower multiagent systems is resolved via second-order super-twisting sliding mode control approach. The followers’ states can keep consistent with the leader’s states on sliding surfaces. The proposed approach can ensure the finite-time consensus if the directed graph of the nonlinear system has a directed path under the condition that leader’s control input is unavailable to any followers. It is proved by using the finite-time Lyapunov stability theory. Simulation results verify availability of the proposed approach.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jeang-Lin Chang

For a class of linear MIMO uncertain systems, a dynamic sliding mode control algorithm that avoids the chattering problem is proposed in this paper. Without using any differentiator, we develop a modified asymptotically stable second-order sliding mode control law in which the proposed controller can guarantee the finite time convergence to the sliding mode and can show that the system states asymptotically approach to zero. Finally, a numerical example is explained for demonstrating the applicability of the proposed scheme.


Robotica ◽  
2018 ◽  
Vol 36 (10) ◽  
pp. 1551-1570 ◽  
Author(s):  
Hossein Mirzaeinejad ◽  
Ali Mohammad Shafei

SUMMARYThis study deals with the problem of trajectory tracking of wheeled mobile robots (WMR's) under non-holonomic constraints and in the presence of model uncertainties. To solve this problem, the kinematic and dynamic models of a WMR are first derived by applying the recursive Gibbs–Appell method. Then, new kinematics- and dynamics-based multivariable controllers are analytically developed by using the predictive control approach. The control laws are optimally derived by minimizing a pointwise quadratic cost function for the predicted tracking errors of the WMR. The main feature of the obtained closed-form control laws is that online optimization is not needed for their implementation. The prediction time, as a free parameter in the control laws, makes it possible to achieve a compromise between tracking accuracy and implementable control inputs. Finally, the performance of the proposed controller is compared with that of a sliding mode controller, reported in the literature, through simulations of some trajectory tracking maneuvers.


2002 ◽  
Vol 8 (2) ◽  
pp. 189-217 ◽  
Author(s):  
Feijun Song ◽  
Edgar An ◽  
Samuel M. Smith

Successful controller development involves three distinct stages, namely, control law design, code debugging and field test. For Autonomous Underwater Vehicle (AUV) applications, the first two stages require special strategies. Since the dynamics of an AUV is highly nonlinear, and the environment that an AUV operates in is noisy with external disturbance that cannot be neglected, a robust control law must be considered in the first stage. The control law design is even more difficult when optimal criteria are also involved. In the second stage, since the software architecture on an AUV is very complicated, debugging the controllers alone without all the software routines running together often can not reveal subtle faults in the controller code. Thorough debugging needs at-sea test, which is costly. Therefore, a platform that can help designers debug and evaluate controller performance before any at-sea experiment is highly desirable. Recently, a 6 Degree of Freedom (DOF) AUV simulation toolbox was developed for the Ocean Explorer (OEX) series AUVs developed at Florida Atlantic University. The simulation toolbox is an ideal platform for controller in-lab debugging and evaluation. This paper first presents a novel robust controller design methodology, named the Sliding Mode Fuzzy Controller (SMFC). It combines sliding mode control and fuzzy logic control to create a robust, easy on-line tunable controller structure. A formal proof of the robustness of the proposed nonlinear sliding mode control is also given. A pitch and a heading controller have been designed with the presented structure and the controller code was tested on the simulation software package as well as at sea. The simulated and at-sea test data are compared. The whole controller design procedure described in this paper clearly demonstrates the advantage of using the simulation toolbox to debug and test the controller in-lab. Moreover, the pitch and heading controller have been used in the real system for more than 2 years, and have also been successfully ported to other types of vehicles without any major modification on the controller parameters. The similarity of the controller performances on different vehicles further demonstrates the robustness of the proposed Sliding Mode Fuzzy Controller. The main contribution of this paper is to provide useful insights into the design and implementation of the proposed control architecture, and its application in AUV control.


2019 ◽  
Vol 41 (13) ◽  
pp. 3565-3580 ◽  
Author(s):  
Hamid Toshani ◽  
Mohammad Farrokhi

In this paper, a robust and chattering-free sliding-mode control strategy using recurrent neural networks (RNNs) and H∞ approach for a class of nonlinear systems with uncertainties is proposed. The dynamic and algebraic models of the RNN are extracted based on the nominal model of the system and formulation of a quadratic programming problem. For tuning the parameters of the sliding surface, the performance index and the switching coefficient, a robust approach based on the H∞ method is developed. To this end, the control law is divided into two parts: (1) the main term, which includes the feedback error and (2) other terms, which include the network states, the reference input and its derivatives and the effects of the uncertainties. The feedback error gain is tuned by solving a linear matrix inequality. The neural optimizer determines the sliding-mode control law without being directly affected by the uncertainties. By applying the proposed method to the continuous-stirred reactor tank and the inverted pendulum problems, the performance of the proposed controller has been evaluated in terms of the tracking accuracy, elimination of the chattering, robustness against the uncertainties and feasibility of the control signals. Moreover, the results are compared with the conventional and twisting sliding-mode control methods.


2013 ◽  
Vol 718-720 ◽  
pp. 1228-1233
Author(s):  
Hong Chao Zhao ◽  
Xian Jun Shi ◽  
Ting Wang

The nonlinear equations of motion were constructed for a supersonic anti-warship missile. In order to estimate the unknown angle-of-attack, a sliding mode observer was designed. The convergence capability of the sliding mode observer was analyzed according to the Lyapunov stability theory. A sliding mode controller was designed to drive the missile normal overload output to track its command, based on the output-redefinition approach. In order to confirm the performance of the designed sliding mode observer and controller, a simulation example was carried out for nonlinear missile model. The simulation results show the fast convergence capability of the designed sliding mode observer and controller.


2000 ◽  
Vol 122 (4) ◽  
pp. 586-593 ◽  
Author(s):  
J. K. Hedrick ◽  
P. P. Yip

This paper discusses the development of a nonlinear controller design methodology and its application to an automotive control problem. The method is called the “Multiple Sliding Surface” method and is closely related to sliding mode control, input/output linearization and integrator backstepping. The method was developed for a class of systems, typical of automotive control systems, where the uncertainties are “mismatched” and where many of the equations contain sparse, experimentally obtained maps. The error bounds on these maps are often unknown and their sparseness makes them difficult to differentiate. The developed method does not require any derivatives and has guaranteed semi-global stability. This paper summarizes the development of the method and applies it to the design of a highly nonlinear system. The example is a combined brake/throttle controller for precision vehicle following. This controller was implemented on the California PATH vehicles in DEMO’97, an automated highway technology demonstration that occurred in San Diego, California in August of 1997. [S0022-0434(00)03004-5]


Author(s):  
YUNJIE WU ◽  
BAITING LIU ◽  
WULONG ZHANG ◽  
XIAODONG LIU

For flight simulator system, a kind of Adaptive Backstepping Sliding Mode Controller (ABSMC) based on Radial Base Function Neural Network (RBFNN) observer is presented. The sliding mode control theory is famous by its characteristic that it is insensitive to the external disturbances and parameters uncertainties. Combining this characteristic with Backstepping method can simplifies the controller design. And the addition of the terminal attractor can make the arrival time shorten greatly. However, too large external disturbances and parameters uncertainties are still not allowed to the system, and the design process of ABSMC does not have the upper bound information of disturbance until a RBFNN observer is designed to solve the problems. The simulation results show that the proposed scheme can improve the tracking precision and reduce the chattering of the control input, and the system has a higher robustness.


Sign in / Sign up

Export Citation Format

Share Document