scholarly journals A CFD-Based Optimization of Building Configuration for Urban Ventilation Potential

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1447
Author(s):  
Jongyeon Lim ◽  
Ryozo Ooka

In this paper, we present a performance-based approach to building configuration design to improve the urban ventilation potential at the conceptual design stage, and we demonstrate its application through a case study. The target performance optimized was the ventilation potential of a district, including a region of interest at a spatial scale of hundreds of meters. To estimate this performance, we used computational fluid dynamics (CFD), coupled with an evolutionary algorithm, to optimize the design alternatives to produce the building configuration most suitable for a given set of site conditions. Three calculation components must be assembled for a CFD-based design optimization: an optimizer, a geometry/mesh generator, and a CFD solver. To provide links between the calculation components, we utilized an in-house parametric design program. A case study was conducted to test the applicability of the proposed design method to identify the optimal solutions that minimize adverse effects on the ventilation potential of the surrounding area. For a configuration of buildings in a dense urban area, the proposed design method successfully improved the design alternatives. The results show that the urban ventilation potential in the case of the optimized building configuration is 16% greater than that of the initial building configuration.

2021 ◽  
Author(s):  
Paul M. Sobota

<p><br clear="none"/></p><p>During the optioneering phase, engineers face the challenge of choosing between myriads of possible designs, while, simultaneously, several sorts of constraints have to be considered. We show in a case study of a 380 m long viaduct how parametric modelling can facilitate the design process. The main challenge was to satisfy the constraints imposed by several different stakeholders. In order to identify sustainable, aesthetic, economic as well as structurally efficient options, we assessed several key performance indicators in real time. By automatically estimating steel and concrete volumes, a simple, yet suitable approximation of the embodied carbon (considering 85-95%) can be obtained at a very early design stage. In summary, our parametric approach allowed us to consider a wider range of parameters and to react more flexibly to changing conditions during the project.</p><p><br clear="none"/></p>


2013 ◽  
Vol 278-280 ◽  
pp. 178-183
Author(s):  
Jian Hua Wang ◽  
Hang Zhang ◽  
Yong Sheng Zhao ◽  
Xiao Lei Song

This paper introduces the development of a tool for modeling and analysis of BTF toolholder-spindle system, based on ANSYS software. The tool is developed in parametric design method. Most parameters are defined automatically except a few parameters requiring users to input, which improves the modeling efficiency greatly. The interface joint of the BTF toolholder-spindle is established by adopting spring-damping model and defined by custom element unit Matrix27. The proposed model reflects the characters of the joint on the properties of BTF toolholder-spindle effectively. A case study is given to verify the efficiency and accuracy of the developed tool.


Author(s):  
Adwait Vaidya ◽  
Jami Shah

The embodiment design stage involves determination of geometric sizes, key parameter values, and matching of component variables to system requirements. This embodiment design stage can be parametrically represented as an iterative design-redesign problem. This paper presents a domain independent characterization of such problems; the characterization includes problem definition, design relations/procedures, and measures of goodness. The paper also discusses representation issues and solution techniques for design-redesign problems. Design tasks are differentiated as domain independent or problem specific and the scope of each design task with respect to the characterization is delineated. A Design Shell implemented on the basis of this characterization is described. This shell can be configured for evaluating designs in any domain. A case study illustrates the use of this Design Shell in characterizing a specific design problem and exploring its design space.


Author(s):  
Y H Chen

In the preliminary stage of engineering design, descriptions of design elements are often imprecise. In this paper, imprecision is represented using fuzzy numbers. Calculation based on fuzzy weighted average is performed to produce the ratings among design alternatives. Alternatives then proceed to the more detailed design stage in the fuzzy rating order. This method provides a tool for design automation at a higher abstract level. This is demonstrated in the bearing selection case study where imprecise linguistic description of a design problem in a manner similar to human language can be accommodated.


2018 ◽  
Vol 11 (2) ◽  
pp. 44-60
Author(s):  
Kitti Károlyfi ◽  
Gabriella László ◽  
Ferenc Papp ◽  
Raymond Bükkösi

This article describes the conceptual design process of an equestrian centre, presenting the covered stadium of the building complex in detail, designed it as a free-form, wide-span steel structure. The main goal of this study is to present the application of the parametric design method through a case study and to examine the interoperability opportunities between architectural and structural design software.


Author(s):  
Khurshid A. Qureshi ◽  
Kazuhiro Saitou

Abstract This paper introduces a new methodology called ‘Design for Facility over Internet (DFF)’. This methodology provides an Internet-based environment for designers to perform manufacturability analysis of product designs with respect to the capabilities of existing manufacturing facilities, upfront into the design process. In the current work, only fixturing (machining datums) capabilities of a manufacturing facility are considered. A prototype DFF system for an automotive connecting rod, is developed. The system enables the designers to design the connecting rods by considering the fixturing (datums) capabilities of existing manufacturing facilities upfront at the concept design stage. The complete system implementation will also enable the manufacturers of connecting rods to create and update the database of their capabilities over the Internet. The DFF system analyzes the parametric design with respect to the fixturing capabilities and generates suggestions for a designer, to modify his design if required, to fit the capabilities of specified facilities.


Buildings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 242
Author(s):  
Ju Hyun Lee ◽  
Michael J. Ostwald

Decision-making in design is a cognitive process wherein alternatives are generated and evaluated, potentially enabling a more creative design process. In recent years parametric design’s heightened capacity for automatically generating and evaluating options has been celebrated by researchers and designers, but it has also placed an increased emphasis on decision-making activities which have not previously been studied in this context. This paper conducts the first in-depth protocol analysis of the decision-making process (DMP) in parametric design. Using empirical data, it identifies three parametric DMPs at the conceptual design stage: (i) “conclusive” DMP, (ii) “confirmative” DMP, and (iii) “simulative” DMP. The results of this research indicate that while conclusive DMP generates and evaluates design alternatives, its “forward incrementation” approach has only limited potential for creativity. The confirmative DMP develops three creative operation loops in parametric design, suggesting it may be an important creative process. The simulative DMP simultaneously addresses divergent and convergent thinking, also indicating potential creative operations and outcomes. The identification and analysis of these DMPs contributes to developing new knowledge about the processes used in parametric design and their capacity to support creative results.


2018 ◽  
Vol 10 (11) ◽  
pp. 3888 ◽  
Author(s):  
Ji Hyoun Hwang ◽  
Hyunsoo Lee

As the concept of prospect-refuge defines a preferred environment, the spatial elements that provide good conditions for the catalyst of the theory have been extensively studied. The well-known architectural element of this theory is the window that optimizes visual openness to outdoor or enclosure from outdoor. The aim of this paper is to develop a design method for prospect-refuge condition by adjusting window design attributes. A parametric design model that measures spatial conditions and presents design alternatives for the window is proposed in two major phases. First, this paper explains a parametric model to generate design alternatives for a window according to its size, aspect ratio, location, and shape. In the second phase, the parametric algorithm is defined for the measurement of prospect-refuge with 3D visibility. As a result, we explore the impact of window design variables on average visibility and difference visibility of prospect and refuge area. Using the parametric design technology, the proposed method presents analytical techniques, considering spatial characteristics.


2019 ◽  
Vol 9 (11) ◽  
pp. 2339 ◽  
Author(s):  
Fan Liu ◽  
Xiaomin Ji ◽  
Gang Hu ◽  
Jing Gao

In this paper, a new parameterized surface, termed SQ-Coons surface, is proposed according to the build mode of Coons patch. The surface is always interpolated to the boundary curves, and its shape details could be controlled by the shape parameters in CE-Bézier basis functions, which makes it suitable for styling design in computer aided design (CAD). In order to exert its geometric advantages in car design, a simplified body CAD template based on characteristic lines is built according to common vehicle features. The template is built entirely from SQ-Coons surfaces, so that the overall style and detail shapes could all be modified by the control points and shape parameters of each surface. By analyzing the curvature of fifty commercial car types generated through the template and various parameters, a set of methods for constraining the range of shape parameters is proposed. On this basis, as an example, the four shape parameters of the hood surface in one model are used as variables to optimize the body shape to achieve the lowest possible aerodynamic drag coefficient in computational fluid dynamics (CFD). The results show that the design method, combining the new surface and the model template, could reflect the modeling characteristics of different cars, and improve the design and scheme adjustment efficiency in the conceptual design stage.


Sign in / Sign up

Export Citation Format

Share Document